Skip to main content
Log in

Effects of rotary inertia on sub- and super-critical free vibration of an axially moving beam

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The most important issue in the vibration study of an engineering system is dynamics modeling. Axially moving continua is often discussed without the inertia produced by the rotation of the continua section. The main goal of this paper is to discover the effects of rotary inertia on the free vibration characteristics of an axially moving beam in the sub-critical and super-critical regime. Specifically, an integro-partial-differential nonlinear equation is modeled for the transverse vibration of the moving beam based on the generalized Hamilton principle. Then the effects of rotary inertia on the natural frequencies, the critical speed, post-buckling vibration frequencies are presented. Two kinds of boundary conditions are also compared. In super-critical speed range, the straight configuration of the axially moving beam loses its stability. The buckling configurations are derived from the corresponding nonlinear static equilibrium equation. Then the natural frequencies of the post-buckling vibration of the super-critical moving beam are calculated by using local linearization theory. By comparing the critical speed and the vibration frequencies in the sub-critical and super-critical regime, the effects of the inertia moment due to beam section rotation are investigated. Several interesting phenomena are disclosed. For examples, without rotary inertia, the study overestimates the stability of the axially moving beam. Moreover, the relative differences between the super-critical fundamental frequencies of the two theories may increase with an increasing beam length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Jakšić N (2009) Numerical algorithm for natural frequencies computation of an axially moving beam model. Meccanica 44(6):687–695

    Article  MathSciNet  MATH  Google Scholar 

  2. Yang B, Mote CD (1991) Controllability and observability of distributed gyroscopic systems. J Dyn Syst 113(1):11–17

    Article  MATH  Google Scholar 

  3. Marynowski K, Kapitaniak T (2014) Dynamics of axially moving continua. Int J Mech Sci 81:26–41

    Article  Google Scholar 

  4. An C, Su J (2014) Dynamic response of axially moving Timoshenko beams: integral transform solution. Appl Math Mech-Engl 35(11):1421–1436

    Article  MathSciNet  MATH  Google Scholar 

  5. Cepon G, Boltezar M (2007) Computing the dynamic response of an axially moving continuum. J Sound Vib 300(1–2):316–329

    Article  ADS  Google Scholar 

  6. Ozhan BB (2014) Vibration and stability analysis of axially moving beams with variable speed and axial force. Int J Struct Stabil Dyn 14(6):1450015

    Article  MathSciNet  MATH  Google Scholar 

  7. Oz HR, Pakdemirli M, Ozkaya E (1998) Transition behaviour from string to beam for an axially accelerating material. J Sound Vib 215(3):571–576

    Article  ADS  Google Scholar 

  8. Ding H, Zu JW (2014) Steady-state responses of pulley-belt systems with a one-way clutch and belt bending stiffness. J Vib Acoust 136(4):041006

    Article  Google Scholar 

  9. Farokhi H, Ghayesh MH, Hussain S (2016) Dynamic stability in parametric resonance of axially excited Timoshenko microbeams. Meccanica 51:2459–2472

    Article  MathSciNet  Google Scholar 

  10. Lim CW, Li C, Yu JL (2010) Dynamic behaviour of axially moving nanobeams based on nonlocal elasticity approach. Acta Mech Sin 26(5):755–765

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Marynowski K (2012) Dynamic analysis of an axially moving sandwich beam with viscoelastic core. Compos Struct 94(9):2931–2936

    Article  Google Scholar 

  12. Saksa T, Banichuk N, Jeronen J, Kurki M, Tuovinen T (2012) Dynamic analysis for axially moving viscoelastic panels. Int J Solids Struct 49(23–24):3355–3366

    Article  MATH  Google Scholar 

  13. Yao G, Zhang YM (2016) Reliability and sensitivity analysis of an axially moving beam. Meccanica 51(3):491–499

    Article  MathSciNet  MATH  Google Scholar 

  14. Yao G, Zhang YM (2016) Dynamics and stability of an axially moving plate interacting with surrounding airflow. Meccanica 51:2111–2119

    Article  MathSciNet  MATH  Google Scholar 

  15. Fung RF, Lu PY, Tseng CC (1998) Non-linearly dynamic modelling of an axially moving beam with a tip mass. J Sound Vib 218(4):559–571

    Article  ADS  Google Scholar 

  16. Pakdemirli M, Ulsoy AG (1997) Stability analysis of an axially accelerating string. J Sound Vib 203(5):815–832

    Article  ADS  Google Scholar 

  17. Yang XD, Wu H, Qian YJ, Zhang W, Lim CW (2017) Nonlinear vibration analysis of axially moving strings based on gyroscopic modes decoupling. J Sound Vib 393(14):308–320

    Article  ADS  Google Scholar 

  18. Yang XD, Zhang W (2014) Nonlinear dynamics of axially moving beam with coupled longitudinal-transversal vibrations. Nonlinear Dyn 78:2547–2556

    Article  Google Scholar 

  19. Ding H, Huang LL, Mao XY, Chen LQ (2017) Primary resonance of a traveling viscoelastic beam under internal resonance. Appl Math Mech-Engl 38(1):1–14

    Article  MathSciNet  MATH  Google Scholar 

  20. Pellicano F, Zirilli F (1998) Boundary layers and non-linear vibrations in an axially moving beam. Int J Non-Lin Mech 33(4):691–711

    Article  MathSciNet  MATH  Google Scholar 

  21. Yurddas A, Ozkaya E, Boyaci H (2013) Nonlinear vibrations of axially moving multi-supported strings having non-ideal support conditions. Nonlinear Dyn 73(3):1223–1244

    Article  MathSciNet  Google Scholar 

  22. Mockensturm EM, Guo JP (2005) Nonlinear vibration of parametrically excited, viscoelastic, axially moving strings. J Appl Mech 72(3):374–380

    Article  MATH  Google Scholar 

  23. Suweken G, Van Horssen WT (2003) On the weakly nonlinear, transversal vibrations of a conveyor belt with a low and time-varying velocity. Nonlinear Dyn 31(2):197–223

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang B (2012) Asymptotic analysis on weakly forced vibration of axially moving viscoelastic beam constituted by standard linear solid model. Appl Math Mech-Engl 33(6):817–828

    Article  MathSciNet  Google Scholar 

  25. Wang YQ, Huang XB, Li J (2016) Hydroelastic dynamic analysis of axially moving plates in continuous hot-dip galvanizing process. Int J Mech Sci 110:201–216

    Article  Google Scholar 

  26. Huang JL, Su RKL, Li WH, Chen SH (2011) Stability and bifurcation of an axially moving beam tuned to three-to-one internal resonances. J Sound Vib 330(3):471–485

    Article  ADS  Google Scholar 

  27. Liu D, Xu W, Xu Y (2012) Dynamic responses of axially moving viscoelastic beam under a randomly disordered periodic excitation. J Sound Vib 331(17):4045–4056

    Article  ADS  Google Scholar 

  28. Yu WQ, Chen FQ (2013) Multi-pulse homoclinic orbits and chaotic dynamics for an axially moving viscoelastic beam. Arch Appl Mech 83(5):647–660

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang W, Wang DM, Yao MH (2014) Using Fourier differential quadrature method to analyze transverse nonlinear vibrations of an axially accelerating viscoelastic beam. Nonlinear Dyn 78(2):839–856

    Article  MathSciNet  MATH  Google Scholar 

  30. Ding H, Tan X, Zhang GC, Chen LQ (2016) Equilibrium bifurcation of high-speed axially moving Timoshenko beams. Acta Mech 227(10):3001–3014

    Article  MathSciNet  MATH  Google Scholar 

  31. Ding H, Zu JW (2013) Periodic and chaotic responses of an axially accelerating viscoelastic beam under two-frequency excitations. Int J Appl Mech 5(2):1350019

    Article  Google Scholar 

  32. Zhang HJ, Ma J, Ding H, Chen LQ (2017) Vibration of axially moving beam supported by viscoelastic foundation. Appl Math Mech-Engl 38(2):161–172

    Article  MathSciNet  MATH  Google Scholar 

  33. Pellicano F, Vestroni F (2000) Nonlinear dynamics and bifurcations of an axially moving beam. J Vib Acoust 122(1):21–30

    Article  Google Scholar 

  34. Ravindra B, Zhu WD (1998) Low-dimensional chaotic response of axially accelerating continuum in the supercritical regime. Arch Appl Mech 68(3–4):195–205

    Article  MATH  Google Scholar 

  35. Ding H, Zhang GC, Chen LQ, Yang SP (2012) Forced vibrations of supercritically transporting viscoelastic beams. J Vib Acoust 134(5):051007

    Article  Google Scholar 

  36. Bagdatli SM, Ozkaya E, Oz HR (2013) Dynamics of axially accelerating beams with multiple supports. Nonlinear Dyn 74(1–2):237–255

    Article  MathSciNet  MATH  Google Scholar 

  37. Ding H (2016) Steady-state responses of a belt-drive dynamical system under dual excitations. Acta Mech Sin 32(1):156–169

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Yang XD, Yang S, Qian YJ, Zhang W, Melnik RVN (2016) Modal analysis of the gyroscopic continua: comparison of continuous and discretized models. J Appl Mech 83:084502

    Article  Google Scholar 

  39. Tang YQ, Zhang DB, Gao JM (2016) Parametric and internal resonance of axially accelerating viscoelastic beams with the recognition of longitudinally varying tensions. Nonlinear Dyn 83(1–2):401–418

    Article  MathSciNet  MATH  Google Scholar 

  40. Ding H, Chen LQ (2010) Galerkin methods for natural frequencies of high-speed axially moving beams. J Sound Vib 329(17):3484–3494

    Article  ADS  Google Scholar 

  41. Chen LQ, Ding H (2010) Steady-state transverse response in coupled planar vibration of axially moving viscoelastic beams. J Vib Acoust 132(1):011009

    Article  Google Scholar 

  42. Ghayesh MH, Kafiabad HA, Reid T (2012) Sub- and super-critical nonlinear dynamics of a harmonically excited axially moving beam. Int J Solids Struct 49(1):227–243

    Article  Google Scholar 

  43. Ghayesh MH, Amabili M (2013) Post-buckling bifurcations and stability of high-speed axially moving beams. Int J Mech Sci 68:76–91

    Article  Google Scholar 

  44. Wang LH, Hu ZD, Zhong Z (2013) Non-linear dynamical analysis for an axially moving beam with finite deformation. Int J Non-Lin Mech 54:5–21

    Article  Google Scholar 

  45. Ding H, Dowell EH, Chen LQ (2018) Transmissibility of bending vibration of an elastic beam. J Vib Acoust 140:031007

    Article  Google Scholar 

  46. Zhang YW, Fang B, Zang J (2015) Dynamic features of passive whole-spacecraft vibration isolation platform based on non-probabilistic reliability. J Vib Control 21:60–67

    Article  Google Scholar 

  47. Li YH, Gao Q, Jian KL, Yin XG (2003) Dynamic responses of viscoelastic axially moving belt. Appl Math Mech-Engl 24(11):1348–1354

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (Nos. 11772181, 11422214,) the “Dawn” Program of Shanghai Education Commission, (No. 17SG38), and Innovation Program of Shanghai Municipal Education Commission (No. 2017-01-07-00-09-E00019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Ding.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, H., Li, Y. & Chen, LQ. Effects of rotary inertia on sub- and super-critical free vibration of an axially moving beam. Meccanica 53, 3233–3249 (2018). https://doi.org/10.1007/s11012-018-0891-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-018-0891-6

Keywords

Navigation