Advertisement

Meccanica

, Volume 53, Issue 14, pp 3495–3515 | Cite as

Bond-based peridynamic modelling of singular and nonsingular crack-tip fields

  • Roberto Ballarini
  • Vito DianaEmail author
  • Luigi Biolzi
  • Siro Casolo
Article
  • 402 Downloads

Abstract

A static meshfree implementation of the bond-based peridynamics formulation for linearly elastic solids is applied to the study of the transition from local to nonlocal behavior of the stress and displacement fields in the vicinity of a crack front and other sources of stress concentration. The long-range nature of the interactions between material points that is intrinsic to and can be modulated within peridynamics enables the smooth transition from the square-root singular stress fields predicted by the classical (local) linear theory of elasticity, to the nonsingular fields associated with nonlocal theories. The accuracy of the peridynamics scheme and the transition from local to nonlocal behavior, which are dictated by the lattice spacing and micromodulus function, are assessed by performing an analysis of the boundary layer that surrounds the front of a two dimensional crack subjected to mode-I loading and of a cracked plate subjected to far-field tension.

Keywords

Discrete approach Non-local elasticity Peridynamics Stress Mode I crack fields 

Notes

Compliance with ethical standards

Conflict of interest

Roberto Ballarini is Associate Editor of Meccanica. The authors declare that they have no other conflicts of interest.

References

  1. 1.
    Aifantis E (1992) On the role of gradients in the localization of deformation and fracture. Int J Eng Sci 30(10):1279–1299CrossRefGoogle Scholar
  2. 2.
    Aifantis E (1999) Strain gradient interpretation of size effects. Int J Fract 95(1–4):299–314CrossRefGoogle Scholar
  3. 3.
    Askes H, Aifantis E (2006) Gradient elasticity theories in statics and dynamics—a unification of approaches. Int J Fract 139(2):297–304CrossRefGoogle Scholar
  4. 4.
    Barenblatt G (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7(C):55–129MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bazant Z, Jirasek M (2002) Nonlocal integral formulations of plasticity and damage: survey of progress. J Eng Mech 128(11):1119–1149CrossRefGoogle Scholar
  6. 6.
    Bobaru F (2011) Peridynamics and multiscale modeling. Int J Multiscale Comput Eng 9(6):7–9Google Scholar
  7. 7.
    Bobaru F, Ha Y (2011) Adaptive refinement and multiscale modeling in 2d peridynamics. Int J Multiscale Comput Eng 9(6):635–659CrossRefGoogle Scholar
  8. 8.
    Bobaru F, Ha Y, Hu W (2012) Damage progression from impact in layered glass modeled with peridynamics. Central Eur J Eng 2(4):551–561Google Scholar
  9. 9.
    Breitenfeld M, Geubelle P, Weckner O, Silling S (2014) Non-ordinary state-based peridynamic analysis of stationary crack problems. Comput Methods Appl Mech Eng 272:233–250ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Capecchi D, Ruta G (2015) The theory of elasticity in the 19th century, vol 52. Springer, BerlinzbMATHGoogle Scholar
  11. 11.
    Capecchi D, Ruta G, Trovalusci P (2010) From classical to Voigt’s molecular models in elasticity. Arch Hist Exact Sci 64(5):525–559MathSciNetCrossRefGoogle Scholar
  12. 12.
    Casolo S, Diana V (2018) Modelling laminated glass beam failure via stochastic rigid body-spring model and bond-based peridynamics. Eng Fract Mech 190:331–346CrossRefGoogle Scholar
  13. 13.
    Cauchy A (1828) De la pression ou tension dans un systéme de points materiels. Oeuvres Complét 3:253–277Google Scholar
  14. 14.
    Cauchy A (1845) Observation sur la pression que supporte un élement de surface plane dans un corps solide ou fluide. Oeuvres Complét 27:230–240Google Scholar
  15. 15.
    Cauchy A (1850) Mémoire sur les vibrations d’un double systéme de molécules et de l’éther continu dans un corps cristallisé. Oeuvres Complet Tome II:338–350Google Scholar
  16. 16.
    Cheng Z, Zhang G, Wang Y, Bobaru F (2015) A peridynamic model for dynamic fracture in functionally graded materials. Compos Struct 133:529–546CrossRefGoogle Scholar
  17. 17.
    Cosserat E, Cosserat F (1909) Théorie des Corps DéformablesGoogle Scholar
  18. 18.
    Cox BN, Gao H, Gross D, Rittel D (2005) Modern topics and challenges in dynamic fracture. J Mech Phys Solids 53(3):565–596ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Desmorat R, Gatuingt F, Jirásek M (2015) Nonlocal models with damage-dependent interactions motivated by internal time. Eng Fract Mech 142:255–275CrossRefGoogle Scholar
  20. 20.
    Di Paola M, Failla G, Zingales M (2009) Physically-based approach to the mechanics of strong non-local linear elasticity theory. J Elast 97(2):103–130MathSciNetCrossRefGoogle Scholar
  21. 21.
    Dontsova E, Ballarini R (2017) Atomistic modeling of the fracture toughness of silicon and silicon–silicon interfaces. Int J Fract 207(1):99–122CrossRefGoogle Scholar
  22. 22.
    Eringen A, Edelen D (1972) On nonlocal elasticity. Int J Eng Sci 10(3):233–248MathSciNetCrossRefGoogle Scholar
  23. 23.
    Eringen A, Speziale C, Kim B (1977) Crack-tip problem in non-local elasticity. J Mech Phys Solids 25(5):339–355ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Gerstle W (2016) Introduction to practical peridynamics: computational solid mechanics without stress and strain. World Scientific Publishing, SingaporeGoogle Scholar
  25. 25.
    Gerstle W, Sau N, Silling S (2007) Peridynamic modeling of concrete structures. Nuclear Eng Des 237(12–13):1250–1258CrossRefGoogle Scholar
  26. 26.
    Gerstle W, Sau N, Sakhavand N (2009) On peridynamic computational simulation of concrete structures. Spec Publ 265:245–264Google Scholar
  27. 27.
    Griffith A (1920) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond 221:163–198ADSCrossRefGoogle Scholar
  28. 28.
    Hu W, Ha Y, Bobaru F, Silling S (2012) The formulation and computation of the nonlocal j-integral in bond-based peridynamics. Int J Fract 176(2):195–206CrossRefGoogle Scholar
  29. 29.
    Irwin G, Krafft J, Paris P, Wells A (1967) Basic aspects of crack growth and fracture. NRL Report 6598, Washington D.C.Google Scholar
  30. 30.
    Isaksson P, Dumont P (2014) Approximation of mode i crack-tip displacement fields by a gradient enhanced elasticity theory. Eng Fract Mech 117:1–11CrossRefGoogle Scholar
  31. 31.
    Isaksson P, Dumont P, du Roscoat SR (2012) Crack growth in planar elastic fiber materials. Int J Solids Struct 49(13):1900–1907CrossRefGoogle Scholar
  32. 32.
    Lehoucq R, Silling S (2008) Force flux and the peridynamic stress tensor. J Mech Phys Solids 56(4):1566–1577ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Liu W, Hong JW (2012) Discretized peridynamics for linear elastic solids. Comput Mech 50(5):579–590MathSciNetCrossRefGoogle Scholar
  34. 34.
    Love A (1944) A treatise on the mathematical theory of elasticity. Dover, New YorkzbMATHGoogle Scholar
  35. 35.
    Madenci E, Oterkus E (2014) Peridynamic theory and its applications. Springer, New YorkCrossRefGoogle Scholar
  36. 36.
    Madenci E, Oterkus S (2016) Ordinary state-based peridynamics for plastic deformation according to von mises yield criteria with isotropic hardening. J Mech Phys Solids 86:192–219ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Maugin G (2017) G: from generalized continuum mechanics to Green A.E. Adv Struct Mater 51:89–106CrossRefGoogle Scholar
  38. 38.
    Mindlin R, Eshel N (1968) On first strain-gradient theories in linear elasticity. Int J Solids Struct 4(1):109–124CrossRefGoogle Scholar
  39. 39.
    Mitchell JA (2011) Nonlocal, ordinary, state-based plasticity model for peridynamics. Sandia report SAND2011-3166, Sandia National Laboratories, Albuquerque, NMGoogle Scholar
  40. 40.
    Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150CrossRefGoogle Scholar
  41. 41.
    Navier C (1823) Mèmoire sur les lois du mouvement des fluides. C R Acad Sci 6:389–440Google Scholar
  42. 42.
    Needleman A (1990) An analysis of tensile decohesion along an interface. J Mech Phys Solids 38(3):289–324ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    Paris PC (2014) A brief history of the crack tip stress intensity factor and its application. Meccanica 49(4):759–764MathSciNetCrossRefGoogle Scholar
  44. 44.
    Poisson S (1813) Remarques sur une équation qui se présente dans la théorie des attractions des sphéroides. Bulletin de la Société Philomathique de Paris 3:388–392Google Scholar
  45. 45.
    Polizzotto C (2001) Nonlocal elasticity and related variational principles. Int J Solids Struct 38(42–43):7359–7380MathSciNetCrossRefGoogle Scholar
  46. 46.
    Saint Venant ABd (1845) Note sur la pression dans l’intérieur des corps ou à leurs surfaces de séparation. Comptes Rendus Hebdomadaires des Séances de l’ Académie des Sciences 1:24–26Google Scholar
  47. 47.
    Shahsavari A, Picu R (2013) Size effect on mechanical behavior of random fiber networks. Int J Solids Struct 50(20):3332–3338CrossRefGoogle Scholar
  48. 48.
    Silling S (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175–209ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    Silling S (2014) Origin and effect of nonlocality in a composite. J Mech Mater Struct 9(2):245–258CrossRefGoogle Scholar
  50. 50.
    Silling S, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83(17–18):1526–1535CrossRefGoogle Scholar
  51. 51.
    Silling S, Lehoucq R (2008) Convergence of peridynamics to classical elasticity theory. J Elast 93(1):13–37MathSciNetCrossRefGoogle Scholar
  52. 52.
    Silling S, Lehoucq R (2010) Peridynamic theory of solid mechanics. Adv Appl Mech 44:73–168CrossRefGoogle Scholar
  53. 53.
    Silling S, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88(2):151–184MathSciNetCrossRefGoogle Scholar
  54. 54.
    Timoshenko S (1983) History of strength of materials. Dover, New YorkGoogle Scholar
  55. 55.
    Weckner O, Mohamed NAN (2013) Viscoelastic material models in peridynamics. Appl Math Comput 219(11):6039–6043MathSciNetzbMATHGoogle Scholar
  56. 56.
    Williams M (1957) On the stress distribution at the base of a stationary crack. J Appl Mech Trans ASME 24:109–114MathSciNetzbMATHGoogle Scholar
  57. 57.
    Zaccariotto M, Luongo F, Sarego G, Galvanetto U (2015) Examples of applications of the peridynamic theory to the solution of static equilibrium problems. Aeronaut J 119(1216):677–700CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of HoustonHoustonUSA
  2. 2.Department ABCPolitecnico di MilanoMilanItaly

Personalised recommendations