Skip to main content
Log in

An experimental study on free surface vortex dynamics

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In the present research, hydrodynamic behavior of free surface vortices including surface displacement of the vortex core as a function of the vortex stability, relationship between the intake hydraulic parameters and vortex strength and characteristics of the vortex vertical stretching as a function of the intake hydraulic parameters were experimentally investigated in a horizontal intake. Relationship between the vortex-induced air and vortex strength was also evaluated and compared with the previous researches. In this regard, by defining a non-dimensional parameter as intake number, relationships between intake hydraulic parameters and other investigated dynamic aspects of free-surface vortices were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Amiri SM, Zarrati AR, Roshan R, Sarkardeh H (2011) Surface vortex prevention at power intakes by horizontal plates. Proc Inst Civ Eng Water Manag 164(4):193–200

    Article  Google Scholar 

  2. Sarkardeh H, Zarrati AR, Jabbari E, Roshan R (2012) Discussion of prediction of intake vortex risk by nearest neighbors modeling. ASCE J Hydraul Eng 137(6):701–705

    Google Scholar 

  3. Möller G (2013) Vortex-induced air entrainment rate at intakes. In: Boes RM (ed) VAW-Mitteilung, vol 220. ETH Zurich, Switzerland

    Google Scholar 

  4. Khodashenas SR, Roshan R, Sarkardeh H, Azamatullah H (2010) Vortex study at orifice spillways of Karun 3 Dam. J Dam Eng 11:131–143

    Google Scholar 

  5. Jorabloo M, Abdolahpour M, Roshan R, Sarkardeh H (2011) A techno-economical view on energy losses at hydropower dams (case study of Karun III Dam and Hydropower Plant). Comput Methods Multiphase Flow VI 70:253

    Article  Google Scholar 

  6. Khanarmuei MR, Rahimzadeh H, Sarkardeh H (2015) Investigating the effect of intake withdrawal direction on critical submergence and strength of vortices. Modares Mech Eng 14(10):35–42 (in Persian)

    Google Scholar 

  7. Knauss J (1987) Swirling flow problems at intakes. In: Naudascher E (ed) IAHR hydraulic structures design manual. A. A. Balkema, Rotterdam

    Google Scholar 

  8. Sarkardeh H (2017) Minimum reservoir water level in hydropower dams. Chin J Mech Eng 30(4):1017–1024

    Article  Google Scholar 

  9. Khanarmuei MR, Rahimzadeh H, Sarkardeh H (2018) Effect of dual intake direction on critical submergence and vortex strength. J Hydraul Res 14(10):35–42

    Google Scholar 

  10. Möller G, Detert M, Boes RM (2015) Vortex-induced air entrainment rates at intakes. ASCE J Hydraul Eng 141(11):1–8

    Article  Google Scholar 

  11. Sarkardeh H, Zarrati AR, Roshan R (2010) Effect of intake head wall and trash rack on vortices. J Hydraul Res 48(1):108–112

    Article  Google Scholar 

  12. Sarkardeh H, Jabbari E, Zarrati AR, Tavakkol S (2014) Velocity field in a reservoir in the presence of an air-core vortex. Proc Inst Civ Eng Water Manag 167(6):356–364

    Article  Google Scholar 

  13. Roshan R, Sarkardeh H, Zarrati AR (2009) Vortex study on a hydraulic model of Godar-e-Landar Dam and hydropower plant. Comput Methods Multiph Flow V 63:217–225

    Article  Google Scholar 

  14. Taghvaei SM, Roshan R, Safavi K, Sarkardeh H (2012) Anti-vortex structures at hydropower dams. Int J Phys Sci 7(28):5069–5077

    Article  Google Scholar 

  15. Azarpira M, Sarkardeh H, Tavakkol S, Roshan R, Bakhshi H (2014) Vortices in dam reservoir: a case study of Karun III dam. Sadhana 39(5):1201–1209

    Article  Google Scholar 

  16. Monshizadeh M, Tahershamsi A, Rahimzadeh H, Sarkardeh H (2017) Vortex dissipation using a hydraulic-based anti-vortex device at intakes. Int J Civ Eng. https://doi.org/10.1007/s40999-017-0266-8

    Google Scholar 

  17. Tahershamsi A, Rahimzadeh H, Monshizadeh M, Sarkardeh H (2018) A new approach on anti-vortex devices at water intakes including a submerged water jet. Eur Phys J Plus 133(4):143

    Article  Google Scholar 

  18. Khanarmuei MR, Rahimzadeh H, Kakuei AR, Sarkardeh H (2016) Effect of vortex formation on sediment transport at dual pipe intakes. Sadhana 41(9):1055–1061

    Google Scholar 

  19. Monshizadeh M, Tahershamsi A, Rahimzadeh H, Sarkardeh H (2017) Experimental investigation of dynamics of the air-core vortices and estimating the air entrainment rate at a horizontal intake. J Modares Mech Eng 17(8):59–67 (in Persian)

    Google Scholar 

  20. Sarkardeh H (2017) Numerical calculation of air entrainment rates due to intake vortices. Meccanica 52(15):3629–3643

    Article  Google Scholar 

  21. Sarkardeh H, Zarrati AR, Jabbari E, Marosi M (2014) Numerical simulation and analysis of flow in a reservoir in the presence of vortex. Eng Appl Comput Fluid Mech 8(4):598–608

    Google Scholar 

  22. Khadem Rabe B, Ghoreishi Najafabadi SH, Sarkardeh H (2017) Numerical simulation of air-core vortex at intake. J Curr Sci 113(1):141–147

    Article  Google Scholar 

  23. Khadem Rabe B, Ghoreishi Najafabadi SH, Sarkardeh H (2018) Numerical simulation of anti-vortex devices at water intakes. Proc Inst Civ Eng Water Manag 171(1):18–29

    Article  Google Scholar 

  24. Anwar HO, Weller JA, Amphlett MB (1978) Similarity of free vortex at horizontal intakes. J Hydraul Res 16(2):95–105

    Article  Google Scholar 

  25. Monshizadeh M, Tahershamsi A, Rahimzadeh H, Sarkardeh H (2017) Comparison between hydraulic and structural based anti-vortex methods at intakes. Eur Phys J Plus 132:329

    Article  Google Scholar 

  26. Rankine WJM (1858) Manual of applied mechanics. C. Griffen Co., London

    MATH  Google Scholar 

  27. Odgaard JA (1986) Free-surface air core vortex. ASCE J Hydraul Eng 112(7):610–620

    Article  Google Scholar 

  28. Daggett LR, Keulegan GH (1974) Similitude in free surface vortex formations. ASCE J Hydraul Eng 100(11):561–581

    Google Scholar 

  29. Padmanabhan M, Hecker GE (1984) Scale effect in pump sump models. ASCE J Hydraul Div 110(10):1540–1556

    Article  Google Scholar 

  30. Borghei SM, Kabiri-Samani AR (2010) Effect of anti-vortex plates on critical submergence at a vertical intake. Sci Iran 17(2):89–95

    Google Scholar 

  31. Carriveau R, Kopp G, Baddour R (2009) Stretching-sustained intake vortices. J Hydraul Res 47(4):486–491

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their best appreciations from Water Research Institute of Iran, and the laboratory of Fluid Mechanics of Mechanical Engineering Department of Amirkabir University of Technology, for their cooperation to provide all needed laboratorial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Tahershamsi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahershamsi, A., Rahimzadeh, H., Monshizadeh, M. et al. An experimental study on free surface vortex dynamics. Meccanica 53, 3269–3277 (2018). https://doi.org/10.1007/s11012-018-0878-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-018-0878-3

Keywords

Navigation