Advertisement

Meccanica

, Volume 53, Issue 11–12, pp 3105–3122 | Cite as

Band gap synthesis in elastic monatomic lattices via input shaping

  • H. Al Ba’ba’a
  • J. Callanan
  • M. Nouh
  • T. Singh
Article

Abstract

This work describes control-theoretic methods for inducing a band gap-like behavior in elastic monatomic lattices. The dynamics of the system under consideration are derived in detail. Open-loop pre-filtering techniques, in the form of Posicast and user-selected time delay filters, are then utilized to eliminate specific frequency contents from the response of the multi-degree of freedom spring-mass chain. The input shaping approach is used to synthesize one or more band gaps in a homogenous lattice that can be designed to resemble Bragg-scattering in phononic crystals, as well as local resonance effects in acoustic metamaterials. The presence of the synthesized band gaps in the lattice’s dispersion behavior is validated using a spatiotemporal Fourier transform of the system’s impulse response as well as the frequency response of the end-to-end transfer function. Finally, an analysis of the control effort required to cancel the targeted system poles is carried out.

Keywords

Wave propagation Lattices Band gap Input shaping 

Notes

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Pai F, Huang G (2015) Theory and design of acoustic metamaterials. (the International Society for Optics and Photonics (SPIE))Google Scholar
  2. 2.
    Deymier PA (2013) Acoustic metamaterials and phononic crystals, vol 173. Springer Science, BerlinGoogle Scholar
  3. 3.
    Huang GL, Sun CT (2010) Band gaps in a multiresonator acoustic metamaterial. J Vib Acoust 132(3):031003.  https://doi.org/10.1115/1.4000784 CrossRefGoogle Scholar
  4. 4.
    Xiao Y, Wen J, Wen X (2012) Longitudinal wave band gaps in metamaterial-based elastic rods containing multi-degree-of-freedom resonators. New J Phys 14(3):033042CrossRefGoogle Scholar
  5. 5.
    Wang Y, Wang Y (2013) Complete bandgaps in two-dimensional phononic crystal slabs with resonators. J Appl Phys 114(4):043509CrossRefADSGoogle Scholar
  6. 6.
    Hussein MI, Frazier MJ (2010) Band structure of phononic crystals with general damping. J Appl Phys 108(9):093506CrossRefADSGoogle Scholar
  7. 7.
    Hussein M, Biringen S, Bilal O, Kucala A (2015) Flow stabilization by subsurface phonons. Proc R Soc A Math Phys Eng Sci 471(2177):20140928CrossRefADSGoogle Scholar
  8. 8.
    Gonella S, To AC, Liu WK (2009) Interplay between phononic bandgaps and piezoelectric microstructures for energy harvesting. J Mech Phys Solids 57(3):621.  https://doi.org/10.1016/j.jmps.2008.11.002 CrossRefzbMATHADSGoogle Scholar
  9. 9.
    Khelif A, Choujaa A, Benchabane S, Djafari-Rouhani B, Laude V (2004) Guiding and bending of acoustic waves in highly confined phononic crystal waveguides. Appl Phys Lett 84(22):4400CrossRefADSGoogle Scholar
  10. 10.
    Yang S, Page JH, Liu Z, Cowan ML, Chan CT, Sheng P (2004) Focusing of sound in a 3D phononic crystal. Phys Rev Lett 93(2):024301CrossRefADSGoogle Scholar
  11. 11.
    DePauw D, Al Babaa H, Nouh M (2018) Metadamping and energy dissipation enhancement via hybrid phononic resonators. Extrem Mech Lett 18:36CrossRefGoogle Scholar
  12. 12.
    Pai PF, Peng H, Jiang S (2014) Acoustic metamaterial beams based on multi-frequency vibration absorbers. Int J Mech Sci 79:195CrossRefGoogle Scholar
  13. 13.
    Hussein MI, Frazier MJ (2013) Metadamping: an emergent phenomenon in dissipative metamaterials. J Sound Vib 332(20):4767CrossRefADSGoogle Scholar
  14. 14.
    Sun H, Du X, Pai PF (2010) Theory of metamaterial beams for broadband vibration absorption. J Intell Mater Syst Struct 21:1085–1101CrossRefGoogle Scholar
  15. 15.
    Nouh M, Aldraihem O, Baz A (2015) Wave propagation in metamaterial plates with periodic local resonances. J Sound Vib 341:53.  https://doi.org/10.1016/j.jsv.2014.12.030 CrossRefADSGoogle Scholar
  16. 16.
    Al Ba’ba’a HB, Attarzadeh MA, Nouh M (2018) Experimental evaluation of structural intensity in 2D plate-type locally resonant elastic metamaterials. J Appl Mech.  https://doi.org/10.1115/1.4039042 Google Scholar
  17. 17.
    Hussein MI, Leamy MJ, Ruzzene M (2014) Dynamics of phononic materials and structures: historical origins, recent progress future outlook. Appl Mech Rev 66(4):040802.  https://doi.org/10.1115/1.4026911 CrossRefADSGoogle Scholar
  18. 18.
    Gupta GS (1970) Natural flexural waves and the normal modes of periodically-supported beams and plates. J Sound Vib 13(1):89CrossRefADSGoogle Scholar
  19. 19.
    Nielsen R, Sorokin S (2015) Periodicity effects of axial waves in elastic compound rods. J Sound Vib 353:135CrossRefADSGoogle Scholar
  20. 20.
    Hvatov A, Sorokin S (2015) Free vibrations of finite periodic structures in pass-and stop-bands of the counterpart infinite waveguides. J Sound Vib 347:200CrossRefADSGoogle Scholar
  21. 21.
    Sugino C, Leadenham S, Ruzzene M, Erturk A (2016) On the mechanism of bandgap formation in locally resonant finite elastic metamaterials. J Appl Phys 120(13):134501CrossRefADSGoogle Scholar
  22. 22.
    Sugino C, Xia Y, Leadenham S, Ruzzene M, Erturk A (2016) A general theory for bandgap estimation in locally resonant metastructures. arXiv preprint arXiv:1612.03130
  23. 23.
    Al Ba’ba’a H, Nouh M, Singh T (2017) Pole distribution in finite phononic crystals: Understanding Bragg-effects through closed-form system dynamics. J Acoust Soc Am 142(3):1399CrossRefADSGoogle Scholar
  24. 24.
    Al Ba’ba’a H, Nouh M, Singh T (2017) Formation of local resonance band gaps in finite acoustic metamaterials: a closed-form transfer function model. Sound Vib J 410:429CrossRefADSGoogle Scholar
  25. 25.
    Al Ba’ba’a H, DePauw D, Singh T, Nouh M (2018) Dispersion transitions and pole-zero characteristics of finite inertially amplified acoustic metamaterials. J Appl Phys 123(10):105106CrossRefADSGoogle Scholar
  26. 26.
    Kim D, Singhose W (2010) Performance studies of human operators driving double-pendulum bridge cranes. Control Eng Pract 18(6):567CrossRefGoogle Scholar
  27. 27.
    Kased R, Singh T (2010) Rest-to-rest motion of an experimental flexible structure subject to friction: linear programming approach. J Vib Acoust 132(1)Google Scholar
  28. 28.
    Yang X, Cui J, Lao D, Li D, Chen J (2016) Input shaping enhanced active disturbance rejection control for a twin rotor multi-input multi-output system (TRMS). ISA Trans 62:287CrossRefGoogle Scholar
  29. 29.
    Pereira E, Trapero JR, Díaz IM, Feliu V (2009) Adaptive input shaping for manoeuvring flexible structures using an algebraic identification technique. Automatica 45(4): 1046Google Scholar
  30. 30.
    Freeman CT, Tan Y (2013) Iterative learning control with mixed constraints for point-to-point tracking. IEEE Trans Control Syst Technol 21(3):604CrossRefGoogle Scholar
  31. 31.
    Masoud Z, Alhazza K, Abu-Nada E, Majeed M (2014) A hybrid command-shaper for double-pendulum overhead cranes. J Vib Control 20(1):24CrossRefGoogle Scholar
  32. 32.
    Alghanim KA, Alhazza KA, Masoud ZN (2015) Discrete-time command profile for simultaneous travel and hoist maneuvers of overhead cranes. J Sound Vib 345:47CrossRefGoogle Scholar
  33. 33.
    Tallman G, Smith O (1958) Analog study of dead-beat posicast control. IRE Trans Autom Control 4(1):14CrossRefGoogle Scholar
  34. 34.
    Singh T (2009) Optimal reference shaping for dynamical systems: theory and applications. CRC Press, Boca RatonCrossRefGoogle Scholar
  35. 35.
    Frazier MJ, Hussein MI (2016) Generalized Bloch’s theorem for viscous metamaterials: Dispersion and effective properties based on frequencies and wavenumbers that are simultaneously complex. Comptes Rendus Physique 17(5):565CrossRefADSGoogle Scholar
  36. 36.
    Nouh M (2017) On the spatial sampling and beat effects in discrete wave profiles of lumped acoustic metamaterials. J Acoust Soc Am 141(3):1514CrossRefADSGoogle Scholar
  37. 37.
    Yueh WC (2005) Eigenvalues of several tridiagonal matrices. Appl Math e-notes 5(66–74):210MathSciNetzbMATHGoogle Scholar
  38. 38.
    Miu D (1993) Mechatronics- electromechanics and contromechanics. Springer, BerlinGoogle Scholar
  39. 39.
    Wie B, Bryson Jr AE (1981) Modeling and control of flexible space structuresGoogle Scholar
  40. 40.
    Airoldi L, Ruzzene M (2011) Design of tunable acoustic metamaterials through periodic arrays of resonant shunted piezos. New J Phys 13(11):113010CrossRefGoogle Scholar
  41. 41.
    Singh T, Vadali SR (1995) Robust time-delay control of multmode systems. Int J Control 62(6):1319CrossRefzbMATHGoogle Scholar
  42. 42.
    Tuttle TD, Seering WP (1994) in American Control Conference. A zero-placement technique for designing shaped inputs to suppress multiple-mode vibration, vol. 3 (IEEE), vol. 3, pp. 2533–2537Google Scholar
  43. 43.
    Singh T, Vadali S (1993) Robust time-delay control. J Dyn Syst Meas Control 115(2A):303CrossRefzbMATHGoogle Scholar
  44. 44.
    Gürleyük S, Cinal Ş (2007) Robust three-impulse sequence input shaper design. J Vib Control 13(12):1807Google Scholar
  45. 45.
    Vaughan J, Yano A, Singhose W (2008) Comparison of robust input shapers. J Sound Vib 315(4):797CrossRefADSGoogle Scholar
  46. 46.
    Hurák Z, Hromčík M, Špiller M (2007) Minimization of 2 norm of the error signal in posicast input command shaping: a polynomial approach. Int J Robust Nonlinear Control 17(8):706MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Elliott JF (1953) The characteristic roots of certain real symmetric matrices, The characteristic roots of certain real symmetric matrices. Master’s thesis, University of Tennessee, KnoxvilleGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringUniversity at Buffalo (SUNY)BuffaloUSA

Personalised recommendations