Skip to main content
Log in

A non-standard finite element method for dynamical behavior of cylindrical classical shell model

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper deals with the approximation of the dynamical behaviors of a cylindrical shell, modeled by the classical Naghdi shell’s mathematical model over a reference domain. We use a non-standard method so called MITC4-p finite element method, which comes from non standard mixed interpolated tensorial component (MITC) formulation for Reissner–Mindlin plates. The performance of this approach is assessed for both, the modal analysis of the free vibrations modes, and time-domain analysis of vibration responses. Some numerical experiments are presented to show the performance of the method, in particular, it is numerically observed that the method is completely locking free and independent of the thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Chapelle D, Bathe K-J (2011) The finite element analysis of shells-fundamentals. Computational fluid and solid mechanics, 2nd edn. Springer, Heidelberg

    Book  MATH  Google Scholar 

  2. Lee HW, Kwak MK (2015) Free vibration analysis of a circular cylindrical shell using the Rayleigh–Ritz method and comparison of different shell theories. J Sound Vib 353:344–377

    Article  ADS  Google Scholar 

  3. Skatulla S, Sansour C, Hjiaj M (2015) On computational shells with scale effects. Comput Methods Appl Mech Eng 283:46–73

    Article  ADS  MathSciNet  Google Scholar 

  4. Wang Q, Shi D, Pang F, Ahad F (2017) Benchmark solution for free vibration of thick open cylindrical shells on pasternak foundation with general boundary conditions. Meccanica 52(1):457–482

    Article  MathSciNet  Google Scholar 

  5. Torkaman-Asadi MA, Firouz-Abadi RD (2016) Free vibration analysis of cylindrical shells partially resting on an elastic foundation. Meccanica 51(5):1113–1125

    Article  MathSciNet  Google Scholar 

  6. Chapelle D, Collin A (2014) Strong convergence results for the asymptotic behavior of the 3D-shell model. J Elast 115(2):173–192

    Article  MathSciNet  MATH  Google Scholar 

  7. Chapelle D (2001) Some new results and current challenges in the finite element analysis of shells. Acta Numer 10:215–250. doi:10.1017/S0962492901000034

    Article  MathSciNet  MATH  Google Scholar 

  8. Chapelle D, Bathe KJ (1998) Fundamental considerations for the finite element analysis of shell structures. Comput Struct 66(1):19–36

    Article  MATH  Google Scholar 

  9. Beirão da Veiga L, Hakula H, Pitkäranta J (2008) Asymptotic and numerical analysis of the eigenvalue problem for a clamped cylindrical shell. Math Models Methods Appl Sci 18(11):1983–2002

    Article  MathSciNet  MATH  Google Scholar 

  10. Artioli E, da Veiga LB, Hakula H, Lovadina C (2009) On the asymptotic behaviour of shells of revolution in free vibration. Comput Mech 44(1):45–60

    Article  MATH  Google Scholar 

  11. Bathe K-J, Iosilevich A, Chapelle D (2000) An evaluation of the MITC shell elements. Comput Struct 75(1):1–30

    Article  Google Scholar 

  12. Bucalem ML, Bathe K-J (1993) Higher-order mitc general shell elements. Int J Numer Methods Eng 36(21):3729–3754

    Article  MathSciNet  MATH  Google Scholar 

  13. Bathe K-J, Dvorkin EN (1986) A formulation of general shell elements—the use of mixed interpolation of tensorial components. Int J Numer Methods Eng 22(3):697–722

    Article  MATH  Google Scholar 

  14. Dvorkin EN, Bathe K-J (1984) A continuum mechanics based four-node shell element for general non-linear analysis. Eng Comput 1(1):77–88

    Article  Google Scholar 

  15. Yamamoto T, Yamada T, Matsui K (2017) A quadrilateral shell element with degree of freedom to represent thickness-stretch. Comput Mech 59(4):625–646

    Article  MathSciNet  Google Scholar 

  16. Bathe K-J, Dvorkin EN (1985) A four-node plate bending element based on Mindlin–Reissner plate theory and a mixed interpolation. Int J Numer Methods Eng 21(2):367–383

    Article  MATH  Google Scholar 

  17. Bathe KJ, Brezzi F (1985) On the convergence of a four-node plate bending element based on Mindlin–Reissner plate theory and a mixed interpolation. In: Whiteman JR (ed) The mathematics of finite elements and applications. Academic Press, London, pp 491–503

    Chapter  Google Scholar 

  18. Durán RG, Hernández E, Hervella-Nieto L, Liberman E, Rodríguez R (2003) Error estimates for low-order isoparametric quadrilateral finite elements for plates. SIAM J Numer Anal 41(5):1751–1772 (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chinosi C, Croce LD (1998) Mixed-interpolated elements for thin shells. Commun Numer Methods Eng 14(12):1155–1170

    Article  MathSciNet  MATH  Google Scholar 

  20. Niemi AH (2010) A bilinear shell element based on a refined shallow shell model. Int J Numer Methods Eng 81(4):485–512

    MathSciNet  MATH  Google Scholar 

  21. Ko Y, Lee P-S, Bathe K-J (2016) The mitc4+ shell element and its performance. Comput Struct 169:57–68

    Article  Google Scholar 

  22. Hernández E, Hervella-Nieto L, Rodríguez R (2003) Computation of the vibration modes of plates and shells by low-order MITC quadrilateral finite elements. Comput Struct 81(8–11):615–628 (K.J. Bathe 60th Anniversary Issue)

    Article  Google Scholar 

  23. Hernández E (2006) Approximation of the vibration modes of a plate and shells coupled with a fluid. J Appl Mech Trans ASME 73(6):1005–1010

    Article  MATH  Google Scholar 

  24. Leissa AW (1973) Vibration of shells. NASA SP. Scientific and Technical Information Office, National Aeronautics and Space Administration; [for sale by the Supt. of Docs., U.S. Govt. Print. Off.]

  25. Soedel W (2004) Vibrations of shells and plates. Mechanical engineering, 3rd edn. CRC Press, Boca Roton

    MATH  Google Scholar 

  26. El-Mously M (2003) Fundamental natural frequencies of thin cylindrical shells: a comparative study. J Sound Vib 264(5):1167–1186

    Article  ADS  Google Scholar 

  27. Torkaman-Asadi MA, Firouz-Abadi RD (2015) Free vibration analysis of cylindrical shells partially resting on an elastic foundation. Meccanica 51(5):1113–1125

    Article  MathSciNet  Google Scholar 

  28. Malinen M (2001) On the classical shell model underlying bilinear degenerated shell finite elements. Int J Numer Methods Eng 52(4):389–416

    Article  MathSciNet  MATH  Google Scholar 

  29. Bathe KJ (1996) Finite element procedures. Prentice-Hall international series in. Prentice Hall, Englewood Cliffs

    Google Scholar 

  30. Trimarchi D, Vidrascu M, Taunton D, Turnock SR, Chapelle D (2013) Wrinkle development analysis in thin sail-like structures using MITC shell finite elements. Finite Elem Anal Des 64:48–64

    Article  MathSciNet  MATH  Google Scholar 

  31. Niemi AH, Pitkranta J, Hakula H (2007) Benchmark computations on point-loaded shallow shells: Fourier vs. FEM. Comput Methods Appl Mech Eng 196(4–6):894–907

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Funding

This study was partially supported by the Chilean agency CONICYT under the projects FONDECYT 1140392, FONDECYT 11140212, and the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No 644602.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Hernández.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Partially supported by the Chilean agency CONICYT under the projects FONDECYT 1140392, FONDECYT 11140212, and the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 644602.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández, E., Spa, C. & Surriba, S. A non-standard finite element method for dynamical behavior of cylindrical classical shell model. Meccanica 53, 1037–1048 (2018). https://doi.org/10.1007/s11012-017-0774-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-017-0774-2

Keywords

Navigation