, Volume 53, Issue 7, pp 1645–1660 | Cite as

Derivation of a model of imperfect interface with finite strains and damage by asymptotic techniques: an application to masonry structures

  • Maria Letizia Raffa
  • Frédéric Lebon
  • Raffaella Rizzoni
New Trends in Mechanics of Masonry


The proposed study aims to derive an imperfect interface model which couples finite strain and damaging. The governing equations are obtained via an asymptotic approach within the finite strain theory. Theoretical findings have been numerically validated within an original application to brick/mortar interfaces in masonry walls in shear loading conditions.


Bonding Asymptotic analysis Finite strains Damage Imperfect interface Brick/mortar interface 



This research was partially supported by Vinci Program 2013 (no. C2-73) of Italo-Francese University.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Alfano G, Sacco E (2006) Combining interface damage and friction in a cohesive-zone model. Int J Numer Methods Eng 68(5):542–582MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Anthoine A (1999) Derivation of the in-plane elastic characteristics of masonry through homogenization theory. Int J Solid Struct 32(2):137–163CrossRefMATHGoogle Scholar
  3. 3.
    Benveniste Y, Miloh T (2001) Imperfect soft and stiff interfaces in two-dimensional elasticity. Mech Mater 33(6):309–323CrossRefGoogle Scholar
  4. 4.
    Bonetti E, Bonfanti G, Lebon F, Rizzoni R (2016) A model of imperfect interface with damage. Meccanica 52(8):1911–1922MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bonetti E, Bonfanti G, Rossi R (2014) Analysis of a temperature-dependent model for adhesive contact with friction. Physica D 285:42–62ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bonetti E, Bonfanti G, Rossi R (2015) Modeling via the internal energy balance and analysis of adhesive contact with friction in thermoviscoelasticity. Nonlinear Anal Real World Appl 22:473–507MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Ciarlet PG (1988) Mathematical elasticity. Volume I: three-dimensional elasticity. North-Holland, AmsterdamMATHGoogle Scholar
  8. 8.
    Dumont S, Lebon F, Rizzoni R (2014) An asymptotic approach to the adhesion of thin stiff films. Mech Res Commun 58:24–35CrossRefGoogle Scholar
  9. 9.
    Fileccia Scimeni G, Giambanco G, Spada A (2014) The interphase model applied to the analysis of masonry structures. Comput Methods Appl Mech Eng 279:6685MathSciNetGoogle Scholar
  10. 10.
    Fouchal F, Lebon F, Raffa ML, Vairo G (2014) An interface model including cracks and roughness applied to masonry. Open Civ Eng J 8(1):263–271CrossRefGoogle Scholar
  11. 11.
    Fouchal F, Lebon F, Titeux I (2009) Contribution to the modelling of interfaces in masonry construction. Constr Build Mater 23:2428–2441CrossRefGoogle Scholar
  12. 12.
    Frémond M (2001) Non-smooth thermo-mechanics. Springer, BerlinGoogle Scholar
  13. 13.
    Gambarotta L, Lagomarsino S (1997) Damage models for the seismic response of brick masonry shear walls. Part I: the mortar joint model and its applications. Earthq Eng Struct 26(4):423–439CrossRefGoogle Scholar
  14. 14.
    Geymonat G, Krasucki F, Lenci S (1999) Mathematical analysis of a bonded joint with a soft thin adhesive. Math Mech Solid 4(2):201–225MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Giambanco G, Rizzo S, Spallino R (2001) Numerical analysis of masonry structures via interface models. Comput Methods Appl Mech Eng 190:64936511CrossRefMATHGoogle Scholar
  16. 16.
    Giambanco G, Fileccia Scimeni G, Spada A (2012) The interphase finite element. Comput Mech 50:353366MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Hashin Z (2002) Thin interphase/imperfect interface in elasticity with application to coated fiber composites. J Mech Phys Solid 50(12):2509–2537ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Klarbring A (1991) Derivation of the adhesively bonded joints by the asymptotic expansion method. Int J Eng Sci 29:493–512MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Lebon F, Ould Khaoua A, Licht C (1998) Numerical study of soft adhesively bonded joints in finite elasticity. Comput Mech 21:134–140CrossRefMATHGoogle Scholar
  20. 20.
    Lebon F, Rizzoni R (2008) Asymptotic study on a soft thin layer: The non-convex case. Mech Adv Mater Struct 15:12–20CrossRefGoogle Scholar
  21. 21.
    Lebon F, Rizzoni R (2010) Asymptotic analysis of a thin interface: the case involving similar rigidity. Int J Eng Sci 48:473–486MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Lebon F, Rizzoni R (2011) Asymptotic behavior of a hard thin linear elastic interphase: an energy approach. Int J Solid Struct 48:441–449CrossRefMATHGoogle Scholar
  23. 23.
    Lebon F, Ronel-Idrissi S (2004) Asymptotic analysis of Drucker–Prager and Mohr–Coulomb soft thin interfaces. Steel Comp Struct 4:133–147CrossRefGoogle Scholar
  24. 24.
    Lebon F, Zaittouni S (2010) Asymptotic modelling of interfaces taking contact conditions into account: asymptotic expansions and numerical implementation. Int J Eng Sci 48:111–127CrossRefGoogle Scholar
  25. 25.
    Lourenço P (1996) Computational strategies for masonry structures. Ph.D. thesis, Faculdade de engenharia da Universidade do PortoGoogle Scholar
  26. 26.
    Lourenço PB, Rots JG (1997) Multisurface interface model for analysis of masonry structures. J Eng Mech 123(7):660–668CrossRefGoogle Scholar
  27. 27.
    Lourenço PB, Rots JG, Blaauwendraad J (1998) Continuum model for masonry: parameter estimation and validation. J Struct Eng 124(6):642–652CrossRefGoogle Scholar
  28. 28.
    Lotfi HR, Shing PB (1994) Interface model applied to fracture of masonry structures. J Struct Eng 120(1):63–80CrossRefGoogle Scholar
  29. 29.
    Mauge C, Kachanov M (1994) Effective elastic properties of an anisotropic material with arbitrarily oriented interacting cracks. J Mech Phys Solid 42:561–584ADSCrossRefMATHGoogle Scholar
  30. 30.
    Medeiros P, Vasconcelos G, Loureno PB, Gouveia J (2013) Numerical modelling of non-confined and confined masonry walls. Constr Build Mater 41:968–976CrossRefGoogle Scholar
  31. 31.
    Milani G, Loureno PB, Tralli A (2006) Homogenised limit analysis of masonry walls, part I: failure surfaces. Comput Struct 84(3–4):166–180CrossRefGoogle Scholar
  32. 32.
    Orefice A, Mancusi G, Lebon F, Dumont S (2016) An experimental/numerical study on the interfacial damage of bonded joints for fibre-reinforced polymer profiles at service conditions. Technologies 4(3):20CrossRefGoogle Scholar
  33. 33.
    Pelissou C, Lebon F (2009) Asymptotic modeling of quasi-brittle interfaces. Comput Struct 87:1216–1223CrossRefGoogle Scholar
  34. 34.
    Raffa ML (2015) Micromechanical modeling of imperfect interfaces and applications. Ph.D. thesis, University of Rome Tor Vergata and Aix-Marseille UniversityGoogle Scholar
  35. 35.
    Raffa ML, Lebon F, Rizzoni R (2016) On modelling brick/mortar interface via a St. Venant-Kirchhoff orthotropic soft interface. Part I: theory. Int J Mason Res Innov 1(2):142–164CrossRefGoogle Scholar
  36. 36.
    Raffa ML, Lebon F, Rizzoni R (2017) On modelling brick/mortar interface via a St. Venant-Kirchhoff orthotropic soft interface. Part II: in silico analysis. Int J Mason Res Innov 2(4)Google Scholar
  37. 37.
    Rekik A, Lebon F (2010) Identification of the representative crack length evolution in a multi-level interface model for quasi-brittle masonry. Int J Solid Struct 47(22–23):3011–3021CrossRefMATHGoogle Scholar
  38. 38.
    Rekik A, Lebon F (2012) Homogenization methods for interface modeling in damaged masonry. Adv Eng Softw 46(1):35–42CrossRefGoogle Scholar
  39. 39.
    Rizzoni R, Lebon F (2012) Asymptotic analysis of an adhesive joint with mismatch strain. Eur J Mech A/Sol 36:1–8MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Rizzoni R, Lebon F (2013) Imperfect interfaces as asymptotic models of thin curved elastic adhesive interphases. Mech Res Commun 51:39–50CrossRefGoogle Scholar
  41. 41.
    Rizzoni R, Dumont S, Lebon F (2017) On Saint Venant-Kirchhoff imperfect interfaces. Int J Nonlinear Mech 89:101–115CrossRefGoogle Scholar
  42. 42.
    Rizzoni R, Dumont S, Lebon F, Sacco S (2014) Higher order model for soft and hard interfaces. Int J Solid Struct 51:4137–4148CrossRefGoogle Scholar
  43. 43.
    Rots JG (1991) Numerical simulation of cracking in structural masonry. Heron 36(2):49–63Google Scholar
  44. 44.
    Sacco E (2009) A nonlinear homogenization procedure for periodic masonry. Eur J Mech A Solids 28(2):209–222CrossRefMATHGoogle Scholar
  45. 45.
    Serpilli M (2014) Asymptotic analysis of a multimaterial with a thin piezoelectric interphase. Meccanica 49(7):1641–1652MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Sevostianov I, Kachanov M (2014) On some controversial issues in effective field approaches to the problem of the overall elastic properties. Mech Mater 69:93–105CrossRefGoogle Scholar
  47. 47.
    Tsukrov I, Kachanov M (2000) Effective moduli of an anisotropic material with elliptical holes of arbitrary orientational distribution. Int J Solid Struct 37(41):5919–5941MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Vermeltfoort AT, Raijmakers TMJ (1992) Shear tests on masonry panels of 1x1 m2. In: Vermeltfoort AT (ed) Research on building structures and building physics: proceedings of an interuniversity research seminar. University of Technology, Eindhoven, pp 171–177Google Scholar
  49. 49.
    Vermeltfoort AT, Raymakers TMJ, Janssen HJM (1993) Shear tests on masonry walls. In: Hamid AA, Harris HG (eds) 6th North American Masonry Conference, 6–9 June 1993. Technomic Publ. Co., Lancaster, pp 1183–1193Google Scholar
  50. 50.
    Zucchini A, Lourenço PB (2002) A micro-mechanical model for the homogenisation of masonry. Int J Solid Struct 39(12):3233–3255CrossRefMATHGoogle Scholar
  51. 51.
    Zucchini A, Lourenço PB (2009) A micro-mechanical homogenisation model for masonry: application to shear walls. Int J Solid Struct 46(3–4):871–886CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.CNRSLaboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRSCréteilFrance
  2. 2.Aix-Marseille Univ., CNRS, Centrale MarseilleLaboratory of Mechanics and AcousticsMarseilleFrance
  3. 3.Department of EngineeringUniversity of FerraraFerraraItaly

Personalised recommendations