Skip to main content
Log in

Time discontinuous finite element method for transient response analysis of linear time-varying structures

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this paper, a mixed form of Hamilton’s law of variable mass system is proposed, and then a time discontinuous finite element method for transient response analysis of linear time-varying structures is developed based on the law. As these time-varying parameters are degraded into time-invariant ones, the time discontinuous finite element method for linear time-varying structures is degraded into an unconditionally stable higher-order accurate time integration method for linear time-invariant structures. The performance of the proposed time integration method has been verified and assessed extensively through many numerical examples, including the single-degree-of-freedom system with a time-varying mass and the string and beam structure with a moving mass. Numerical results demonstrate that the proposed time finite element method for linear time-varying structures performs extremely well compare with the Newmark method, the existing time continuous finite element method for linear time-varying structures as well as the combination of linear time-invariant time integration method and time frozen technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Spiridonakos MD, Poulimenos AG, Fassois SD (2010) Output-only identification and dynamic analysis of time-varying mechanical structures under random excitation: a comparative assessment of parametric methods. J Sound Vib 329(7):768–785

    Article  ADS  Google Scholar 

  2. Nikkhoo A, Rofooei FR, Shadnam MR (2007) Dynamic behavior and modal control of beams under moving mass. J Sound Vib 306(3):712–724

    Article  ADS  MathSciNet  Google Scholar 

  3. Nikkhoo A, Farazandeh A, Ebrahimzadeh Hassanabadi M, Mariani S (2015) Simplified modeling of beam vibrations induced by a moving mass by regression analysis. Acta Mech 226(7):2147–2157

    Article  MathSciNet  MATH  Google Scholar 

  4. Zarfam R, Khaloo AR, Nikkhoo A (2013) On the response spectrum of Euler–Bernoulli beams with a moving mass and horizontal support excitation. Mech Res Commun 47:77–83

    Article  Google Scholar 

  5. Banerjee AK (2000) Dynamics of a variable-mass, flexible-body system. J Guid Control Dyn 23(3):501–508

    Article  ADS  Google Scholar 

  6. Yu K, Yang K, Bai Y (2015) Experimental investigation on the time-varying modal parameters of a trapezoidal plate in temperature-varying environments by subspace tracking-based method. J Vib Control 21(16):3305–3319

    Article  Google Scholar 

  7. Nhleko S (2009) Free vibration states of an oscillator with a linear time-varying mass. J Vib Acoust 131(5):051011

    Article  Google Scholar 

  8. Li QS (2001) Free vibration of SDOF systems with arbitrary time-varying coefficients. Int J Mech Sci 43(3):759–770

    Article  MATH  Google Scholar 

  9. Li QS, Fang JQ, Liu DK (2000) Exact solutions for free vibration of single-degree-of-freedom systems with nonperiodically varying parameters. J Vib Control 6(3):449–462

    Article  Google Scholar 

  10. Zhao X, Hu Z, van der Heijden GM (2015) Dynamic analysis of a tapered cantilever beam under a travelling mass. Meccanica 50(6):1419–1429

    Article  MathSciNet  MATH  Google Scholar 

  11. Bajer CI, Dyniewicz B (2008) Space-time approach to numerical analysis of a string with a moving mass. Int J Numer Methods Eng 76(10):1528–1543

    Article  MathSciNet  MATH  Google Scholar 

  12. Bajer CI, Dyniewicz B (2009) Virtual functions of the space-time finite element method in moving mass problems. Comput Struct 87(7):444–455

    Article  Google Scholar 

  13. Bajer CI, Dyniewicz B (2012) Numerical analysis of vibrations of structures under moving inertial load. Springer, Berlin

    Book  MATH  Google Scholar 

  14. Dyniewicz B (2012) Space-time finite element approach to general description of a moving inertial load. Finite Elem Anal Des 62:8–17

    Article  MathSciNet  Google Scholar 

  15. Zhao R, Yu K (2015) An efficient transient analysis method for linear time-varying structures based on multi-level substructuring method. Comput Struct 146:76–90

    Article  Google Scholar 

  16. Liu X, Zhou G, Zhu S, Wang Y, Sun W, Weng S (2014) A modified highly precise direct integration method for a class of linear time-varying systems. Sci China Phys Mech Astron 57(7):1382–1389

    Article  ADS  Google Scholar 

  17. Yue C, Ren X, Yang Y, Deng W (2016) A modified precise integration method based on Magnus expansion for transient response analysis of time varying dynamical structure. Chaos Solitons Fractals 89:40–46

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Gurtin ME (1964) Variational principles for linear elastodynamics. Arch Ration Mech Anal 16(1):34–50

    Article  MathSciNet  MATH  Google Scholar 

  19. Baruch M, Riff R (1982) Hamilton’s principle, Hamilton’s law—6n correct formulations. AIAA J 20(5):687–692

    Article  ADS  MATH  Google Scholar 

  20. Bailey CD (1975) Application of Hamilton’s law of varying action. AIAA J 13(9):1154–1157

    Article  ADS  MATH  Google Scholar 

  21. Borri M, Ghiringhelli GL, Lanz M, Mantegazza P, Merlini T (1985) Dynamic response of mechanical systems by a weak Hamiltonian formulation. Comput Struct 20(1):495–508

    Article  MATH  Google Scholar 

  22. Borri M, Mello F, Atluri SN (1990) Variational approaches for dynamics and time-finite-elements: numerical studies. Comput Mech 7(1):49–76

    Article  MATH  Google Scholar 

  23. Borri M, Mello F, Atluri SN (1991) Primal and mixed forms of Hamiltons’s principle for constrained rigid body systems: numerical studies. Comput Mech 7(3):205–220

    Article  MATH  Google Scholar 

  24. Borri M, Bottasso C, Mantegazza P (1992) Basic features of the time finite element approach for dynamics. Meccanica 27(2):119–130

    Article  MATH  Google Scholar 

  25. Borri M, Bottasso C (1993) A general framework for interpreting time finite element formulations. Comput Mech 13(3):133–142

    Article  MATH  Google Scholar 

  26. Aharoni D, Bar-Yoseph P (1992) Mixed finite element formulations in the time domain for solution of dynamic problems. Comput Mech 9(5):359–374

    Article  MATH  Google Scholar 

  27. Sheng G, Fung TC, Fan SC (1998) Parametrized formulations of Hamilton’s law for numerical solutions of dynamic problems: part II. Time finite element approximation. Comput Mech 21(6):449–460

    Article  MATH  Google Scholar 

  28. Blum H, Jansen T, Rademacher A, Weinert K (2008) Finite elements in space and time for dynamic contact problems. Int J Numer Methods Eng 76(10):1632–1644

    Article  MathSciNet  MATH  Google Scholar 

  29. Bui QV (2006) On the enforcing energy conservation of time-finite elements for particle systems. Int J Numer Methods Eng 68(9):967–992

    Article  MathSciNet  MATH  Google Scholar 

  30. Fung TC (1996) Unconditionally stable higher-order accurate Hermitian time finite elements. Int J Numer Methods Eng 39(20):3475–3495

    Article  MATH  Google Scholar 

  31. Hulbert GM (1992) Time finite element methods for structural dynamics. Int J Numer Methods Eng 33(2):307–331

    Article  MathSciNet  MATH  Google Scholar 

  32. Penny JET, Howard GF (1980) Time-domain finite-element solutions for single-degree-of-freedom systems with time-dependent parameters. J Mech Eng Sci 22(1):29–33

    Article  Google Scholar 

  33. Zhao R, Yu K (2014) Hamilton’s law of variable mass system and time finite element formulations for time-varying structures based on the law. Int J Numer Methods Eng 99(10):711–736

    Article  MathSciNet  MATH  Google Scholar 

  34. Bailey CD (1975) A new look at Hamilton’s principle. Found Phys 5(3):433–451

    Article  ADS  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Grant No. 11372084) and the China Scholarship Council (Grant No. 201506120107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiping Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendices

Appendix 1: Compound matrix multiplication

If all elements of a matrix are row (column) vectors with the same order, then this matrix is defined as a row (column) compound matrix. Assume that \(\varvec{A} = \left[ {\varvec{a}_{ij} } \right]_{m \times n}\) is a \(m \times n\) row compound matrix and its elements \(\varvec{a}_{ij}\) are all k-order row vectors, and also assume that \(\varvec{B} = \left[ {\varvec{b}_{rs} } \right]_{p \times q}\) is a \(p \times q\) column compound matrix and its elements \(\varvec{b}_{rs}\) are all k-order column vectors. The compound matrix product ‘\(\times\)’ of \(\varvec{A}\) and \(\varvec{B}\) is defined as

$$\varvec{A} \times \varvec{B} = \varvec{D} = \left[ {\begin{array}{*{20}c} {\varvec{D}_{11} } & \cdots & {\varvec{D}_{1j} } & \cdots & {\varvec{D}_{1n} } \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ {\varvec{D}_{i1} } & \cdots & {\varvec{D}_{ij} } & \cdots & {\varvec{D}_{in} } \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ {\varvec{D}_{m1} } & \cdots & {\varvec{D}_{mj} } & \cdots & {\varvec{D}_{mn} } \\ \end{array} } \right]$$
(102)

where the submatrix \(\varvec{D}_{ij}\) is given by

$$\varvec{D}_{ij} = \left[ {\begin{array}{*{20}c} {\varvec{a}_{ij} \cdot \varvec{b}_{11} } & \cdots & {\varvec{a}_{ij} \cdot \varvec{b}_{1s} } & \cdots & {\varvec{a}_{ij} \cdot \varvec{b}_{1q} } \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ {\varvec{a}_{ij} \cdot \varvec{b}_{r1} } & \cdots & {\varvec{a}_{ij} \cdot \varvec{b}_{rs} } & \cdots & {\varvec{a}_{ij} \cdot \varvec{b}_{rq} } \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ {\varvec{a}_{ij} \cdot \varvec{b}_{p1} } & \cdots & {\varvec{a}_{ij} \cdot \varvec{b}_{ps} } & \cdots & {\varvec{a}_{ij} \cdot \varvec{b}_{pq} } \\ \end{array} } \right]$$
(103)

in which ‘\(\cdot\)’ denotes the vector dot product. As the order of the elements k is reduced to one (namely \(\varvec{a}_{ij}\) and \(\varvec{b}_{rs}\) are both scalars), the compound matrix product ‘\(\times\)’ is reduced to Kronecker product ‘\(\otimes\)’.

Appendix 2: Coefficient matrixes of time discontinuous finite element methods

The differential coefficient matrixes of the proposed time discontinuous finite element methods for transient response analysis of time-varying and time-invariant structures are given here. The coefficient matrixes of TFEM-1121 method are given by

(104)
(105)
$$\varvec{D}_{F} = \frac{{\Delta t}}{6}\left[ {\begin{array}{*{20}c} { - 1} & { - 2} & 0 \\ 0 & { - 2} & { - 1} \\ \end{array} } \right]$$
(106)

The coefficient matrixes of TFEM-2242 method are given by

(107)
(108)
$$\varvec{D}_{F} = \frac{{\Delta t}}{630}\left[ {\begin{array}{*{20}c} { - 44} & { - 104} & {30} & 8 & 5 \\ { - 10} & { - 128} & { - 144} & { - 128} & { - 10} \\ 5 & 8 & {30} & { - 104} & { - 44} \\ \end{array} } \right]$$
(109)

The coefficient matrixes of TFEM-1120 method are given by

$$\bar{\varvec{D}}_{11} = \bar{\varvec{D}}_{22}^{M} = \frac{1}{2}\left[ {\begin{array}{*{20}c} { - 1} & { - 1} \\ 1 & { - 1} \\ \end{array} } \right]$$
(110)
$$\bar{\varvec{D}}_{12} = - \bar{\varvec{D}}_{21} = - \bar{\varvec{D}}_{22}^{C} = \frac{{\Delta t}}{6}\left[ {\begin{array}{*{20}c} 2 & 1 \\ 1 & 2 \\ \end{array} } \right]$$
(111)
$$\varvec{D}_{F} = \frac{{\Delta t}}{6}\left[ {\begin{array}{*{20}c} { - 1} & { - 2} & 0 \\ 0 & { - 2} & { - 1} \\ \end{array} } \right]$$
(112)

The coefficient matrixes of TFEM-2240 method are given by

$$\bar{\varvec{D}}_{11} = \bar{\varvec{D}}_{22}^{M} = \frac{1}{6}\left[ {\begin{array}{*{20}c} { - 3} & { - 4} & 1 \\ 4 & 0 & { - 4} \\ { - 1} & 4 & { - 3} \\ \end{array} } \right]$$
(113)
$$\bar{\varvec{D}}_{12} = - \bar{\varvec{D}}_{21} = - \bar{\varvec{D}}_{22}^{C} = \frac{{\Delta t}}{30}\left[ {\begin{array}{*{20}c} 4 & 2 & { - 1} \\ 2 & {16} & 2 \\ { - 1} & 2 & 4 \\ \end{array} } \right]$$
(114)
$$\varvec{D}_{F} = \frac{{\Delta t}}{630}\left[ {\begin{array}{*{20}c} { - 44} & { - 104} & {30} & 8 & 5 \\ { - 10} & { - 128} & { - 144} & { - 128} & { - 10} \\ 5 & 8 & {30} & { - 104} & { - 44} \\ \end{array} } \right]$$
(115)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Yu, K. & Hulbert, G.M. Time discontinuous finite element method for transient response analysis of linear time-varying structures. Meccanica 53, 703–726 (2018). https://doi.org/10.1007/s11012-017-0764-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-017-0764-4

Keywords

Navigation