Skip to main content

Robotically controlled scale-model testing of masonry vault collapse

Abstract

Scale-model testing can be used to understand the equilibrium and validate the computational modelling of discrete-element assemblies subjected to external loads or support displacements. This paper proposes a novel approach to investigate the collapse of discrete-element assemblies using 3D-printed scale models manipulated with force-sensitive robotic arms combined with an optical measuring system. To demonstrate that this provides a more flexible and comprehensive solution for the assessment of the structural behaviour of unreinforced masonry structures, the same setup is used to conduct different types of experiments on a 3D-printed model of a cross vault. First, the robotic arms are used to apply a point load in different locations while measuring the resistance of the vault until collapse. In a second experiment, the robotic arms are used to simulate the effect of progressive differential settlement of the supports of the vault. The trajectory along which the displacement of the support is applied is based on real-time measurements by the force-sensitive robots of the occurring outward thrust.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

References

  1. Addis B (2005) A history of using scale models to inform the design of structures. Instituto Juan de Herrera, Madrid, pp 9–14

    Google Scholar 

  2. Albu-Schäffer A, Haddadin S, Ott Ch, Stemmer A, Wimböck T, Hirzinger G (2007) The DLR lightweight robot: design and control concepts for robots in human environments. Ind Robot Int J 34(5):376–385. doi:10.1108/01439910710774386

    Article  Google Scholar 

  3. Andrews Larry (2001) A template for the nearest neighbor problem. C/C++ Users J 19(11):40–49 ISSN 1075-2838

    Google Scholar 

  4. Besl Paul J, McKay Neil D (1992) A method for registration of 3-d shapes. IEEE Trans Pattern Anal Mach Intell 14(2):239–256. doi:10.1109/34.121791 ISSN 0162-8828

    Article  Google Scholar 

  5. Bischoff R, Kurth J, Schreiber G, Koeppe R, Albu-Schäffer A, Beyer A, Haddadin S, Stemer A, Grunwald G, Hirzinger G (2010) The lightweight robot arm a new reference platform for robotics research and manufacturing. In: ISR/robotik, pp 741–748

  6. Danyzy A (1732) Méthode générale pour déterminer la résistance qu’il faut opposer à la poussée des voûtes. Histoire de la Société des Sciences établie à Montpellier 2:40–56

    Google Scholar 

  7. Garcia S (1991) Compendio de architectura y simetría de los templos. Colección “Tratadistas Castellano-Leoneses”, 1991. Colegio Oficial de Arquitectos en Valladolid, 1681

  8. GOM. Optical Measuring Techniques. http://www.gom.com/, 2016. Accessed Oct 21 2016

  9. Heyman J (1995) The stone skeleton: structural engineering of masonry architecture. Cambridge University Press, Cambridge

    Book  Google Scholar 

  10. Huerta S (2006) Geometry and equilibrium: the gothic theory of structural design. Struct Eng 84(2):23–28 ISSN 1466-5123

    Google Scholar 

  11. KUKA. KUKA Industrial Robots. http://www.kuka-robotics.com/, 2016. Accessed Oct 21 2016

  12. Ochsendorf J (2006) The masonry arch on spreading supports. Struct Eng 84(2):29–35

    MathSciNet  Google Scholar 

  13. Quiñonez A, Zessin J, Nutzel A, Ochsendorf J (2010) Small-sale models for testing masonry structures. Adv Mater Res 133–134:497–502. doi:10.4028/www.scientific.net/AMR.133-134.497

    Article  Google Scholar 

  14. Rhinoceros. NURBS modelling for Windows. http://www.rhino3d.com/, 2016. Accessed Oct 21 2016

  15. Rossi M, Calderini C, Lagomarsino S (2016) Experimental testing of the seismic in-plane displacement capacity of masonry cross vaults through a scale model. Bull Earthq Eng 13(10):261–281. doi:10.1007/s10518-015-9815-1

    Article  Google Scholar 

  16. Rossi M, Barentin CC, Van Mele T, Block P (2017) Experimental study on the behaviour of masonry pavilion vaults on spreading supports. Structures 11:110–120. doi:10.1016/j.istruc.2017.04.008 ISSN 2352-0124

    Article  Google Scholar 

  17. Stratasys. 3D Printing Solutions. http://www.stratasys.com/, 2016. Accessed Oct 21 2016

  18. Theodossopoulos D, Sinha BP, Usmani AS, Macdonald AJ (2002) Assessment of the structural response of masonry cross vaults. Strain 38(3):119–127. doi:10.1046/j.0039-2103.2002.00021.x (ISSN 1475-1305)

    Article  Google Scholar 

  19. Van Mele T, McInerney J, DeJong M, Block P (2012) Physical and computational discrete modelling of masonry vault collapse. In: Jasie\(\grave{n}\)ko J (eds) Structural analysis of historical constructions, pp 2552–2560

Download references

Acknowledgements

This research is supported by the NCCR Digital Fabrication, funded by the Swiss National Science Foundation (NCCR Digital Fabrication Agreement # 51NF40-141853).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Block.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Calvo Barentin, C., Van Mele, T. & Block, P. Robotically controlled scale-model testing of masonry vault collapse. Meccanica 53, 1917–1929 (2018). https://doi.org/10.1007/s11012-017-0762-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-017-0762-6

Keywords

  • Masonry
  • Vaults
  • Collapse
  • Scale-model testing
  • Stability
  • Lightweight robots
  • Force sensing
  • As-built geometry