Advertisement

Meccanica

, Volume 53, Issue 7, pp 1699–1717 | Cite as

Homogenization of heterogeneous masonry beams

  • Daniela Addessi
  • Elio Sacco
New Trends in Mechanics of Masonry

Abstract

This study presents a two-scale model to describe the out-of-plane masonry response. One-dimensional (1D) structural elements, like masonry columns or strips of long wall characterized by the periodic repetition of bricks and mortar arranged in stack bond, are considered. A damage-friction plasticity law is adopted to model the mortar joint constitutive response, while the bricks are assumed as linear elastic. A 1D beam formulation is introduced at both the structural and micromechanical scale, linking the two levels by means of a kinematic map. This expresses the microscopic beam strains in the masonry unit cell (UC) as function of the macroscopic generalized strains. The kinematic field in the UC is completed by adding an unknown periodic fluctuation term. A nonlinear homogenization procedure is developed, proposing a semi-analytical solution for the micromechanical problem, based on the fiber discretization of the mortar joints. A force-based beam-column finite element procedure is adopted at the structural scale and the solution algorithm for the element state determination is illustrated in details. Some numerical applications, showing the UC constitutive response and the behavior of masonry structural elements, are finally presented.

Keywords

Masonry Multiscale model Damage Plasticity Beam force-based finite elements 

Notes

Funding

This study was funded by ReLUIS (Italian Department of Civil Protection), MIUR-PRIN, University of Cassino and Southern Lazio and University of Rome Sapienza.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Addessi D, Liberatore D, Masiani R (2015) Force-based beam finite element (FE) for the pushover analysis of masonry buildings. Int J Archit Herit 9(3):231–243CrossRefGoogle Scholar
  2. 2.
    Addessi D, Marfia S, Sacco E, Toti J (2014) Modeling approaches for masonry structures. Open Civ Eng J 8:288–300CrossRefGoogle Scholar
  3. 3.
    Addessi D, Mastrandrea A, Sacco E (2014) An equilibrated macro-element for nonlinear analysis of masonry structures. Eng Struct 70:82–93CrossRefGoogle Scholar
  4. 4.
    Addessi D, Sacco E (2016) Nonlinear analysis of masonry panels using a kinematic enriched plane state formulation. Int J Solids Struct 90:194–214CrossRefGoogle Scholar
  5. 5.
    AlShawa O, Sorrentino L, Liberatore D (2017) Simulation of shake table tests on out-of-plane masonry buildings. Part (II): combined finite-discrete elements. Int J Archit Herit 11(1):79–93Google Scholar
  6. 6.
    Atkinson RH, Amadei BP, Saeb S, Sture S (1989) Response of masonry bed joints in direct shear. J Struct Eng 115(9):2276–2296CrossRefGoogle Scholar
  7. 7.
    Berto L, Saetta A, Scotta R, Vitaliani R (2002) An orthotropic damage model for masonry structures. Int J Numer Methods Eng 55:127–157CrossRefzbMATHGoogle Scholar
  8. 8.
    Cecchi A, Sab K (2007) A homogenized Reissner–Mindlin model for orthotropic periodic plates: application to brickwork panels. Int J Solids Struct 44(18):6055–6079CrossRefzbMATHGoogle Scholar
  9. 9.
    Cecchi A, Sab K (2009) A homogenized Love–Kirchhoff model for out-of-plane loaded random 2d lattices: Application to “quasi-periodic” brickwork panels. Int J Solids Struct 46:2907–2919MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chen S-Y, Moon FL, Yi T (2008) A macroelement for the nonlinear analysis of in-plane unreinforced masonry piers. Eng Struct 30(8):2242–2252CrossRefGoogle Scholar
  11. 11.
    Crespi P, Franchi A, Giordano N, Scamardo M, Ronca P (2016) Structural analysis of stone masonry columns of the Basilica S. Maria di Collemaggio. Eng Struct 129:81–90CrossRefGoogle Scholar
  12. 12.
    Drougkas A, Roca P, Molins C (2016) Nonlinear micro-mechanical analysis of masonry periodic unit cells. Int J Solids Struct 80:193–211CrossRefGoogle Scholar
  13. 13.
    Elmalich D, Rabinovitch O (2009) Masonry and monolithic circular arches strengthened with composite materials—A finite element model. Comput Struct 87(9–10):521–533CrossRefGoogle Scholar
  14. 14.
    Forgács T, Sarhosis V, Bagi K (2017) Minimum thickness of semi-circular skewed masonry arches. Eng Struct 140:317–336CrossRefGoogle Scholar
  15. 15.
    Gambarotta L, Lagomarsino S (1997) Damage models for the seismic response of brick masonry shear walls. Part I: the mortar joint model and its application. Earthq Eng Struct Dyn 26:423–439CrossRefGoogle Scholar
  16. 16.
    Ghosh S, Lee K, Raghavan P (2001) A multi-level computation model for multi-scale damage analysis in composite and porous media. Int J Solids Struct 38:2335–2385CrossRefzbMATHGoogle Scholar
  17. 17.
    Giambanco G, Rizzo S, Spallino R (2001) Numerical analysis of masonry structures via interface models. Comput Methods Appl Mech Eng 190:6493–6511ADSCrossRefzbMATHGoogle Scholar
  18. 18.
    Heyman J (1969) The safety of masonry arches. Int J Mech Sci 11(4):363–385CrossRefGoogle Scholar
  19. 19.
    Ismail N, Ingham JM (2016) In-plane and out-of-plane testing of unreinforced masonry walls strengthened using polymer textile reinforced mortar. Eng Struct 118:167–177CrossRefGoogle Scholar
  20. 20.
    Kouznetsova VG, Geers MGD, Brekelmans WAM (2002) Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int J Numer Methods Eng 54:1235–1260CrossRefzbMATHGoogle Scholar
  21. 21.
    Lin Y, Lawley D, Wotherspoon L, Ingham JM (2016) Out-of-plane testing of unreinforced masonry walls strengthened using ECC shotcrete. Structures 7:33–42CrossRefGoogle Scholar
  22. 22.
    Lofti HR, Shing BP (1994) Interface model applied to fracture of masonry structures. J Struct Eng 120:63–80CrossRefGoogle Scholar
  23. 23.
    Lourenço PB (1996) Computational strategies for masonry structures. PhD thesis, Delft University of TechnologyGoogle Scholar
  24. 24.
    Lourenço PB, Rots JG, Blaauwendraad J (1998) Continuum model for masonry: parameter estimation and validation. J Struct Eng 124(6):642–652CrossRefGoogle Scholar
  25. 25.
    Massart TJ, Peerlings RHJ, Geers MGD (2007) An enhanced multi-scale approach for masonry wall computations with localization of damage. Int J Numer Methods Eng 69(5):1022–1059CrossRefzbMATHGoogle Scholar
  26. 26.
    Massart TJ, Peerlings RHJ, Geers MGD (2007) Structural damage analysis of masonry walls using computational homogenization. Int J Damage Mech 16:199–226CrossRefGoogle Scholar
  27. 27.
    Mercatoris BCN, Bouillard Ph, Massart TJ (2009) Multi-scale detection of failure in planar masonry thin shells using computational homogenisation. Eng Fract Mech 76(4):479–499CrossRefGoogle Scholar
  28. 28.
    Mercatoris BCN, Massart TJ (2011) A coupled two-scale computational scheme for the failure of periodic quasi-brittle thin planar shells and its application to masonry. Int J Numer Methods Eng 85:1177–1206CrossRefzbMATHGoogle Scholar
  29. 29.
    Milani G, Lourenço PB (2012) 3D non-linear behavior of masonry arch bridges. Comput Struct 110:133–150CrossRefGoogle Scholar
  30. 30.
    Pelà L, Cervera M, Roca P (2013) An orthotropic damage model for the analysis of masonry structures. Constr Build Mater 41:957–967CrossRefGoogle Scholar
  31. 31.
    Petracca M, Pelà L, Rossi R, Oller S, Camata G, Spacone E (2017) Multiscale computational first order homogenization of thick shells for the analysis of out-of-plane loaded masonry walls. Comput Methods Appl Mech Eng 315:273–301ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Rizzi E, Rusconi F, Cocchetti G (2014) Analytical and numerical DDA analysis on the collapse mode of circular masonry arches. Eng Struct 60:241–257CrossRefGoogle Scholar
  33. 33.
    Roca P, Cervera M, Gariup G, Pelà L (2010) Structural analysis of masonry historical constructions. Classical and advanced approaches. Arch Comput Methods Eng 17(3):299–325CrossRefzbMATHGoogle Scholar
  34. 34.
    Sacco E (2009) A nonlinear homogenization procedure for periodic masonry. Eur J Mech A Solids 28(2):209–222CrossRefzbMATHGoogle Scholar
  35. 35.
    Serpieri R, Albarella M, Sacco E A (2017) 3D microstructured cohesive-frictional interface model and its rational calibration for the analysis of masonry panels. Int J Solids Struct 122–123:110–127CrossRefGoogle Scholar
  36. 36.
    Spacone E, Ciampi V, Filippou FC (1996) Mixed formulation of nonlinear beam finite element. Comput Struct 58(1):71–83CrossRefzbMATHGoogle Scholar
  37. 37.
    Suquet P (1987) Elements of homogenization for inelastic solid mechanics. In: Sanchez-Palencia E, Zaoui A (eds) Homogenization techniques for composite media. Springer, BerlinGoogle Scholar
  38. 38.
    van der Pluijm R (1999) Out of plane bending of masonry: behaviour and strength. PhD thesis, Eindhoven University of TechnologyGoogle Scholar
  39. 39.
    Witzany J, Cejka T, Zigler R (2014) Failure mechanism of compressed short brick masonry columns confined with FRP strips. Constr Build Mater 63:180–188CrossRefGoogle Scholar
  40. 40.
    Zhang Y, Macorini L, Izzuddin BA (2016) Mesoscale partitioned analysis of brick-masonry arches. Eng Struct 124:142–166CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Strutturale e GeotecnicaUniversità di Roma SapienzaRomeItaly
  2. 2.Dipartimento di Ingegneria Civile e MeccanicaUniversità di Cassino e del Lazio MeridionaleCassinoItaly

Personalised recommendations