en.wikipedia.org/wiki/Obsidian/media
Abdollahi A, Arias I (2012) Phase-field modeling of crack propagation in piezoelectric and ferroelectric materials with different electromechanical crack conditions. J Mech Phys Solids 60(12):2100–2126
ADS
MathSciNet
Article
Google Scholar
Ambrosio L, Tortorelli VM (1990) Approximation of functionals depending on jumps by elliptic functionals via \(\varGamma\)-convergence. Commun Pure Appl Math 43:999–1036
MathSciNet
Article
MATH
Google Scholar
Amestoy PR, Duff IS, L’Excellent J-Y, Koster J (2000) Mumps: a general purpose distributed memory sparse solver. In: International workshop on applied parallel computing. Springer, pp 121–130
Balay S, Brown J, Buschelman K, Eijkhout V, Gropp W, Kaushik D, Knepley M, McInnes LC, Smith B, Zhang H (2012) PETSc users manual revision 3.3. Computer Science Division, Argonne National Laboratory, Argonne, IL
Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217–220:77–95
MathSciNet
Article
MATH
Google Scholar
Borden MJ, Hughes TJR, Landis CM, Verhoosel CV (2014) A higher-order phase-field model for brittle fracture: formulation and analysis within the isogeometric analysis framework. Comput Methods Appl Mech Eng 273:100–118
ADS
MathSciNet
Article
MATH
Google Scholar
Borden MJ, Hughes TJR, Landis CM, Anvari A, Lee IJ (2016) A phase-field formulation for fracture in ductile materials: finite deformation balance law derivation, plastic degradation, and stress triaxiality effects. Comput Methods Appl Mech Eng 312:130–166
ADS
MathSciNet
Article
Google Scholar
Bourdin B (2007) The variational formulation of brittle fracture: numerical implementation and extensions. In: Volume 5 of IUTAM symposium on discretization methods for evolving discontinuities, IUTAM bookseries, chapter 22. Springer, Dordrecht, pp 381–393
Bourdin B, Francfort GA, Marigo J-J (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 45:797–826
ADS
MathSciNet
Article
MATH
Google Scholar
Briggs WL, McCormick SF et al (2000) A multigrid tutorial. SIAM, Philadelphia
Book
MATH
Google Scholar
Francfort GA, Marigo J-J (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46:1319–1342
ADS
MathSciNet
Article
MATH
Google Scholar
Gaston D, Newmann C, Hansen G, Lebrun-Grandie D (2009) MOOSE: a parallel computational framework for coupled systems of nonlinear equations. Nucl Eng Des 239:1768–1778
Article
Google Scholar
Geist GA, Romine CH (1988) Lu factorization algorithms on distributed-memory multiprocessor architectures. SIAM J Sci Stat Comput 9(4):639–649
MathSciNet
Article
MATH
Google Scholar
Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Comput Methods Appl Mech Eng. doi:10.1016/j.cma.2015.12.017
MathSciNet
Google Scholar
Guide MU (1998) The mathworks, vol 5. Inc, Natick, p 333
Google Scholar
Henry H, Levine H (2004) Dynamic instabilities of fracture under biaxial strain using a phase field model. Phys Rev Lett 93:105505
ADS
Article
Google Scholar
Hesch C, Gil AJ, Ortigosa R, Dittmann M, Bilgen C, Betsch P, Franke M, Janz A, Weinberg K (2017) A framework for polyconvex large strain phase-field methods to fracture. Comput Methods Appl Mech Eng 317:649–683
ADS
MathSciNet
Article
Google Scholar
Hesch C, Weinberg K (2014) Thermodynamically consistent algorithms for a finite-deformation phase-field approach to fracture. Int J Numer Methods Eng 99:906–924
MathSciNet
Article
MATH
Google Scholar
Johnson KL (1987) Contact mechanics. Cambridge University Press, Cambridge
MATH
Google Scholar
Karma A, Kessler DA, Levine H (2001) Phase-field model of mode III dynamic fracture. Phys Rev Lett 81:045501
ADS
Article
Google Scholar
Kuhn C, Müller R (2010) A continuum phase field model for fracture. Eng Fract Mech 77:3625–3634
Article
Google Scholar
Mariani S, Perego U (2003) Extended finite element method for quasi-brittle fracture. Int J Numer Methods Eng 58:103–126
MathSciNet
Article
MATH
Google Scholar
Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199:2765–2778
ADS
MathSciNet
Article
MATH
Google Scholar
Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng 83(10):1273–1311
MathSciNet
Article
MATH
Google Scholar
Nocedal J, Wright SJ (2006) Numerical optimization. Springer, New York
MATH
Google Scholar
Müller R (2016) A benchmark problem for phase-field models of fracture. Presentation at the annual meeting of SPP 1748: reliable simulation techniques in solid mechanics. Development of non-standard discretisation methods, mechanical and mathematical analysis, Pavia
Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Methods Eng 44(9):1267–1282
Article
MATH
Google Scholar
Pandolfi A, Ortiz M (2012) An eigenerosion approach to brittle fracture. Int J Numer Methods Eng 92:694–714
MathSciNet
Article
MATH
Google Scholar
Roe KL, Siegmund T (2003) An irreversible cohesive zone model for interface fatigue crack growth simulation. Eng Fract Mech 70(2):209–232
Article
Google Scholar
Saad Y (2003) Iterative methods for sparse linear systems. SIAM, Philadelphia
Book
MATH
Google Scholar
Schenk O, Gärtner K (2004) Solving unsymmetric sparse systems of linear equations with pardiso. Future Gener Comput Syst 20(3):475–487
Article
MATH
Google Scholar
Schmidt B, Leyendecker S (2009) \(\varGamma\)-convergence of variational integrators for constraint systems. J Nonlinear Sci 19:153–177
ADS
MathSciNet
Article
MATH
Google Scholar
Sneddon Ian N (1965) The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3:47–57
MathSciNet
Article
MATH
Google Scholar
Sukumar N, Srolovitz DJ, Baker TJ, Prevost J-H (2003) Brittle fracture in polycrystalline microstructures with the extended finite element method. Int J Numer Methods Eng 56:2015–2037
Article
MATH
Google Scholar
Verhoosel CV, de Borst R (2013) A phase-field model for cohesive fracture. Int J Numer Methods Eng 96:43–62
MathSciNet
Article
MATH
Google Scholar
Wallner H (1939) Linienstrukturen an Bruchflächen. Zeitschrift für Physik 114:368–378
ADS
Article
Google Scholar
Weinberg K, Dally T, Schuss S, Werner M, Bilgen C (2016) Modeling and numerical simulation of crack growth and damage with a phase field approach. GAMM-Mitt 39:55–77
MathSciNet
Article
Google Scholar
Weinberg K, Hesch C (2017) A high-order finite deformation phase-field approach to fracture. Contin Mech Thermodyn 29:935–945
ADS
MathSciNet
Article
MATH
Google Scholar
Xu X-P, Needlemann A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42(9):1397–1434
ADS
Article
MATH
Google Scholar
Zulian P, Kopaničáková A, Schneider T (2016) Utopia: A c++ embedded domain specific language for scientific computing. https://bitbucket.org/zulianp/utopia