, Volume 53, Issue 7, pp 1857–1873 | Cite as

Modelling the cracks produced by settlements in masonry structures

  • A. Iannuzzo
  • M. Angelillo
  • E. De Chiara
  • F. De Guglielmo
  • F. De Serio
  • F. Ribera
  • A. Gesualdo
New Trends in Mechanics of Masonry


The present work is concerned with the prediction of the crack pattern produced by given kinematical data (settlements/distortions) in masonry constructions. By adopting the simplified model of Heyman, extending it to masonry structures treated as continuous bodies, we restrict the analysis to the search of displacement fields which are piecewise rigid. Restricting to small strains and displacements we look for the solution of the kinematical problem by minimizing the potential energy of the structure. A variational approximation of the minimum problem is obtained by considering a fixed finite element subdivision of the structure into rigid blocks. Two case studies are presented to illustrate the way in which a particular fracture pattern can be identified as the one associated to the minimum of the energy in this restricted class of piecewise rigid displacements.


Masonry Unilateral materials Settlements Cracks 


Compliance with ethical standards

Conflict of interest

The authors declare that they do not have any conflict of interest.


  1. 1.
    Heyman J (1966) The stone skeleton. Int J Solids Struct 2(2):249–279CrossRefGoogle Scholar
  2. 2.
    Kooharian A (1952) Limit analysis of voussoir (segmental) and concrete archs. J Am Concr Inst 24(4):317–328Google Scholar
  3. 3.
    Livesley RK (1978) Limit analysis of structures formed from rigid blocks. Int J Numer Methods Eng 12(12):1853–1871CrossRefMATHGoogle Scholar
  4. 4.
    Como M (1992) Equilibrium and collapse analysis of masonry bodies. Meccanica 27(3):185–194CrossRefMATHGoogle Scholar
  5. 5.
    Angelillo M (2014) Practical applications of unilateral models to masonry equilibrium. In: Angelillo M (ed) Mechanics of masonry structures. Springer, Vienna, pp 109–210CrossRefGoogle Scholar
  6. 6.
    Brandonisio G, Mele E, De Luca A (2017) Limit analysis of masonry circular buttressed arches under horizontal loads. Meccanica. doi: 10.1007/s11012-016-0609-6
  7. 7.
    Brandonisio G, Mele E, De Luca A (2015) Closed form solution for predicting the horizontal capacity of masonry portal frames through limit analysis and comparison with experimental test results. Eng Fail Anal 55:246–270CrossRefGoogle Scholar
  8. 8.
    Brandonisio G, Lucibello G, Mele E, De Luca A (2013) Damage and performance evaluation of masonry churches in the 2009 L’Aquila earthquake. Eng Fail Anal 34:693–714CrossRefGoogle Scholar
  9. 9.
    Gesualdo A, Cennamo C, Fortunato A, Frunzio G, Monaco M, Angelillo M (2016) Equilibrium formulation of masonry helical stairs. Meccanica 52(8):1963–1974MathSciNetCrossRefGoogle Scholar
  10. 10.
    Angelillo M, Fortunato A, Montanino A, Lippiello M (2014) Singular stress fields in masonry structures: Derand was right. Meccanica 49(5):1243–1262MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Fortunato A, Babilio E, Lippiello M, Gesualdo A, Angelillo M (2016) Limit analysis for unilateral masonry-like structures. Open Constr Build Technol J 10(Suppl 2:M12):346–362CrossRefGoogle Scholar
  12. 12.
    Fortunato A, Fabbrocino F, Angelillo M, Fraternali F (2017) Limit analysis of masonry structures with free discontinuities. Meccanica. doi: 10.1007/s11012-017-0663-8
  13. 13.
    Angelillo M, Babilio E, Fortunato A (2012) Numerical solutions for crack growth based on the variational theory of fracture. Comput Mech 50(3):285–301MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Gesualdo A, Monaco M (2015) Constitutive behaviour of quasi-brittle materials with anisotropic friction. Latin Am J Solids Struct 12(4):695–710CrossRefGoogle Scholar
  15. 15.
    Monaco M, Guadagnuolo M, Gesualdo A (2014) The role of friction in the seismic risk mitigation of freestanding art objects. Nat Hazards 73(2):389–402CrossRefGoogle Scholar
  16. 16.
    De Serio F, Angelillo M, De Chiara E, Gesualdo A, Iannuzzo A, Pasquino M (2016) Masonry structures made of monolithic blocks with an application to spiral stairs (Submitted to Meccanica)Google Scholar
  17. 17.
    Chambolle A, Giacomini A, Ponsiglione M (2007) Piecewise rigidity. J Funct Anal 244(1):134–153MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Iannuzzo A, Angelillo M, Cennamo C, De Serio F, Fortunato A, Gesualdo A (2017) Detecting fractures in masonry structures with two different energy based approximation strategies (Submitted to Computers and Structures)Google Scholar
  19. 19.
    Fortunato A, Fraternali F, Angelillo M (2014) Structural capacity of masonry walls under horizontal loads. Ing Sism 31(1):41–49Google Scholar
  20. 20.
    Giaquinta M, Giusti E (1985) Researches on the equilibrium of masonry structures. Arch Ration Mech Anal 88(4):359–392MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Anzellotti G (1985) A class of convex non-coercive functionals and masonry-like materials. In: Annales de l’IHP analyse non linéaire, vol 2, no (4), pp 261–307Google Scholar
  22. 22.
    Dantzig GB, Orden A, Wolfe P (1955) The generalized simplex method for minimizing a linear form under linear inequality restraints. Pac J Math 5(2):183–195MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Mehrotra S (1992) On the implementation of a primal-dual interior point method. SIAM J Optim 2(4):575–601MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Vanderbei RJ (2015) Linear programming. Springer, BerlinCrossRefGoogle Scholar
  25. 25.
    Wolfram S (2003) The mathematica book, 5th edn. Wolfram Media, ChampaignMATHGoogle Scholar
  26. 26.
    Cennamo C, Di Fiore M (2013) Structural, seismic and geotechnical analysis of the Sant’Agostino church in L’aquila. Rev Ing Const 28(1):7–20CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • A. Iannuzzo
    • 1
  • M. Angelillo
    • 2
  • E. De Chiara
    • 2
  • F. De Guglielmo
    • 2
  • F. De Serio
    • 1
  • F. Ribera
    • 2
  • A. Gesualdo
    • 1
  1. 1.Department of Structures for Engineering and ArchitectureUniversity of Naples Federico IINaplesItaly
  2. 2.Department of Civil EngineeringUniversity of SalernoSalernoItaly

Personalised recommendations