Skip to main content
Log in

Bingham fluids: deformation and energy dissipation in triangular cross section tube flow

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Flow of Bingham plastics through straight, long tubes with non-circular cross-sections is studied by means of an analytical method that allows to model a wide spectrum of tube geometries. Shear stress normal to equal velocity lines, velocity field and plug zones are explored, in particular in a tube with equilateral triangular cross-section for small values of the Bingham number Bi, and they are compared with corresponding numerical solutions. We show that a circular plug is present at the center of the triangular tube cross-section, consistent with numerical simulations as well as with previous results in the literature, if calculations up to and including first order in the shape perturbation parameter \(\epsilon\) are taken into account. However with the inclusion of the second order terms in the algorithm this structure is no longer present and no plug zone is predicted for the same pressure drop. We find that in that case normal shear stresses are always greater than the yield stress of the fluid. As a result, the central region becomes a pseudo-plug since it presents small but non-vanishing relative deformations and does not move as a rigid core. The energy dissipation function for the Bingham fluid flow is written in terms of natural coordinates. Its distribution depends only on the normal shear stress at any point with Bingham number as a parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Safronchik AI (1959) Non-steady flows of a visco-plastic material between parallel walls. J Appl Math Mech (PMM) 23:1314–1327

    Article  MathSciNet  MATH  Google Scholar 

  2. Safronchik AI (1959) Rotation of a cylinder with a variable angular velocity in a visco-plastic medium. J Appl Math Mech (PMM) 23:1504–1511

    Article  MathSciNet  MATH  Google Scholar 

  3. Safronchik AI (1960) Unsteady flow of a visco-plastic material in a circular tube. J Appl Math Mech (PMM) 24:200–207

    Article  MathSciNet  MATH  Google Scholar 

  4. Mosolov PP, Mjasnikov VP (1965) Variational methods in the theory of viscous-plastic medium. J Appl Math Mech (PMM) 29:468–492

    Article  Google Scholar 

  5. Mosolov PP, Mjasnikov VP (1966) On stagnant flow regions of a visco-plastic medium in pipes. J Appl Math Mech (PMM) 30:705–719

    Article  Google Scholar 

  6. Mosolov PP, Mjasnikov VP (1967) On qualitative singularities of the flow of a visco-plastic medium in pipes. J Appl Math Mech (PMM) 31:581–585

    Article  Google Scholar 

  7. Huilgol RR (2004) On kinetic conditions affecting the existence and non-existence of a moving yield surface in unsteady unidirectional flows of Bingham fluids. J Non-Newton Fluid Mech 123:215–221

    Article  MATH  Google Scholar 

  8. Huilgol R (2010) On the description of the motion of the yield surface in unsteady shearing flows of a Bingham fluid as a jerk wave. J Non-Newton Fluid Mech 165:65–69

    Article  MATH  Google Scholar 

  9. Glowinski R (1974) Sur lécoulement dun fluide de Bingham dans une conduite cylindrique. J Mécanique 13:601–621

    MathSciNet  MATH  Google Scholar 

  10. Sekimoto K (1991) An exact non-stationary solution of simple shear flow in a Bingham fluid. J Non-Newton Fluid Mech 39:107–113

    Article  MATH  Google Scholar 

  11. Sekimoto K (1993) Motion of the yield surface in a Bingham fluid with a simple-shear geometry. J Non-Newton Fluid Mech 46:219–227

    Article  MATH  Google Scholar 

  12. Duvaut G, Lions JL (1972) Les Inéquations en méchanique et en physique. Dunod, Paris

    MATH  Google Scholar 

  13. Saramito P, Roquet N (2001) An adaptive finite element method for viscoplastic fluid flows in pipes. Comput Methods Appl Mech Eng 190:5391–5412

    Article  ADS  MATH  Google Scholar 

  14. Roquet N, Saramito P (2008) An adaptive finite element method for viscoplastic flows in a square pipe with stick-slip at the wall. J Non-Newton Fluid Mech 155:101–115

    Article  MATH  Google Scholar 

  15. Fortin M (1972) Calcul numérique des écoulements des fluids de Bingham et des fluides Newtoniens incompressibles par la méthod des éléments finis, thése, Paris VI

  16. Huilgol RR, Panizza MP (1995) On the determination of the plug flow region in Bingham fluids through the application of variational inequalities. J Non-Newton Fluid Mech 58:207–217

    Article  Google Scholar 

  17. Fortin M, Glowinski R (1982) Méthodes de Lagrangian augmenté. Applications á la résolution numérique de problémes aux limites, Méthodes Mathématiques de lInformatique, Dunod

  18. Glowinski R, Le-Tallec P (1989) Augmented Lagrangian and operator-splitting methods in non-linear mechanics. Stud Appl Math Soc Ind Appl Math. doi:10.1137/1.9781611970838

    MATH  Google Scholar 

  19. Walton I, Bittleston S (1991) The axial flow of a Bingham plastic in a narrow eccentric annulus. J Fluid Mech 222:39–60

    Article  ADS  MATH  Google Scholar 

  20. Wachs A (2007) Numerical simulation of steady Bingham flow through an eccentric annular cross-section by distributed Lagrange multiplier fictitious domain and augmented Lagrangian methods. J Non-Newton Fluid Mech 142:183–198

    Article  MATH  Google Scholar 

  21. Tang G, Wang S, Ye P, Tao W (2011) Bingham fluid simulation with the incompressible lattice Boltzmann model. J Non-Newton Fluid Mech 166:145–151

    Article  MATH  Google Scholar 

  22. Turan O, Chakraborty N, Poole R (2010) Laminar natural convection of Bingham fluids in a square enclosure with differentially heated side walls. J Non-Newton Fluid Mech 154:901–913

    Article  MATH  Google Scholar 

  23. Akram S, Nadeem S, Hussain A (2014) Effects of heat and mass transfer on peristaltic flow of a Bingham fluid in the presence of inclined magnetic field and channel with different wave forms. J Magn Magn Mater 362:184–192

    Article  ADS  Google Scholar 

  24. Moyers-Gonzalez MA, Frigaard IA (2004) Numerical solution of duct flows of multiple visco-plastic fluids. J Non-Newton Fluid Mech 122:227–241

    Article  MATH  Google Scholar 

  25. Lipscomb G, Denn M (1984) Flow of Bingham fluids in complex geometries. J Non-Newton Fluid Mech 14:337–346

    Article  MATH  Google Scholar 

  26. Putz A, Frigaard I, Martinez DM (2009) On the lubrication paradox and the use of regularisation methods for lubrication flows. J Non-Newton Fluid Mech 163:62–77

    Article  MATH  Google Scholar 

  27. Letelier M, Siginer D (2007) On the flow of a class of viscoinelastic-viscoplastic fluids in tubes of non-circular contour. Int J Eng Sci 45:873–881

    Article  MathSciNet  MATH  Google Scholar 

  28. Siginer D, Letelier M (2010) Heat transfer asymptote in laminar flow of non-linear viscoelastic fluids in straight non-circular tubes. Int J Eng Sci 48:1544–1562

    Article  MathSciNet  MATH  Google Scholar 

  29. Barrera C, Letelier M, Siginer D, Stockle J (2016) The Graetz problem in tubes of arbitrary cross section. Acta Mech 227:3239–3246. doi:10.1007/s00707-015-1540-y

    Article  MathSciNet  Google Scholar 

  30. Siginer D, Letelier M (2011) Laminar flow of non-linear viscoelastic fluids in straight tubes of arbitrary contour. Int J Heat Mass Transf 54:2188–2202

    Article  MATH  Google Scholar 

  31. Letelier M, Stockle J (2011) A shape-factor method for modelling parallel and axially-varying flow in tubes and channels of complex cross-section shapes. In: Biomedical science, engineering and technology, INTECH, Croatia, pp 469–486

Download references

Acknowledgements

This work was supported by FONDECYT Chile through Grant Number 1130346, and by DICYT at Universidad de Santiago de Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Letelier.

Appendix

Appendix

Equation (27) is solved by decoupling variables in the form \(w_2 (r,\theta )=R_2(r)+P_2(r)\cos {6\theta }\). The resulting equations for \(R_2(r)\equiv R_{2a}/R_{2b}\) and \(P_2(r)\equiv P_{2a}/P_{2b}\) were solved analytically using Wolfram Mathematica 10,

$$R_{2a}= {{Bi}} [{{Bi}}^4 (9 - 14 r) + 136 {{Bi}}^3 r + 48 {{Bi}}^2 (38 - 63 r) r 64 {{Bi}} r (90 r^2-29) + 320 r (2 - 15 r^3)]$$
(34)
$$\begin{aligned} R_{2b}& {}= 16A^2 r \end{aligned}$$
(35)

and

$$\begin{aligned} P_{2a}& {}= {{Bi}} \left\{ 9 ({{Bi}}-2) A\log (2 - {{Bi}}) (3 {{Bi}}^4 + 2504 {{Bi}}^3 r\right. \end{aligned}$$
(36)
$$\begin{aligned}&-\, 34524 {{Bi}}^2 r^2 + 123204 {{Bi}} r^3 - 128200 r^4 \nonumber \\&+\, 3 r \log {r}(230 {{Bi}}^3 - 2304 {{Bi}}^2 r+ 5760 {{Bi}} r^2 \nonumber \\&-\, 4000 r^3 + 27B (\log {r} - 2\log [1 -\frac{2r}{{{Bi}}}])))\nonumber \\&+\, 2 ({{Bi}} (-9 {{Bi}}^4 C + 4 {{Bi}}^2 (-485950 + {{Bi}} (354215 \nonumber \\&+\, {{Bi}} (5 {{Bi}} (34 + {{Bi}})-57723))) r + 12 {{Bi}} (1263470\nonumber \\&+\,{{Bi}} ({{Bi}} (3900 + (18299 - 13 {{Bi}}) {{Bi}})-696067)) r^2 \nonumber \\&+\,12 (-1943800 + {{Bi}} (19520+ {{Bi}} (677379\nonumber \\&+\, 5 {{Bi}} (4 {{Bi}}-23153)))) r^3 + 384600C r^4)\nonumber \\&-\, 243 {{Bi}} CrB\log ^2{r} -6 (-97190 + {{Bi}} (93379 \nonumber \\&+\, {{Bi}} ({{Bi}} (1912 + {{Bi}})-26193))) r B\log [2r-{{Bi}}] \nonumber \\&+\, 6 r \log {r} ({{Bi}}^3 (-97190+ {{Bi}} (72679 + {{Bi}} (-12738 \nonumber \\&+\, {{Bi}} (187 + {{Bi}})))) - 18 {{Bi}}^2 (-97190+ {{Bi}} (81859 \nonumber \\&+\, {{Bi}} ({{Bi}} (952 + {{Bi}})-18705))) r+ 72 {{Bi}} (-97190\nonumber \\&+\,{{Bi}} (86179 + {{Bi}} (-21513 + {{Bi}} (1312 + {{Bi}})))) r^2\nonumber \\&-\,80 (-97190+ {{Bi}} (88879 + {{Bi}} (-23268\nonumber \\&+\,{{Bi}} (1537 + {{Bi}})))) r^3+81 {{Bi}}CB \log [1 - \frac{2r}{{{Bi}}}]))\nonumber \\&-\,486 Ar({{Bi}}-2)(2 {{Bi}} (5 {{Bi}}^2 - 39 {{Bi}} r + 60 r^2)\nonumber \\&+\, 3B(\log {r} - \log [2r-{{Bi}}])) \text {Li}_2\left( \frac{2}{{{Bi}}}\right) \nonumber \\&\left. +\, 486 rB(2 {{Bi}}C - 3A({{Bi}}-2)\log [2 - {{Bi}}])\text {Li}_2\left( \frac{2r}{{{Bi}}}\right) \right\} \nonumber \\ P_{2b}=\, & {} [16A^2 r(3({{Bi}}-2)A\log [2-{{Bi}}]-2{{Bi}}C)] \end{aligned}$$
(37)

where

$$\begin{aligned} A=\, & {} 40 + ({{Bi}}-16) {{Bi}}\nonumber \\ B=\, & {} ({{Bi}} - 2 r) ({ {Bi}}^2 - 16 {{Bi}} r + 40 r^2)\nonumber \\ C=\, & {} 60 + {{Bi}} (5 {{Bi}}-39) \end{aligned}$$
(38)

In this, Li\(_n(x)\) is the polylogarithm function.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Letelier, M., Barrera, C., Siginer, D. et al. Bingham fluids: deformation and energy dissipation in triangular cross section tube flow. Meccanica 53, 161–173 (2018). https://doi.org/10.1007/s11012-017-0716-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-017-0716-z

Keywords

Navigation