, Volume 53, Issue 7, pp 1899–1915 | Cite as

A simple and effective nonlinear elastic one-dimensional model for the structural analysis of masonry arches

New Trends in Mechanics of Masonry


In this paper the static response of a masonry arch is studied by way of a one-dimensional nonlinear elastic model in which masonry is regarded as a material with bounded tensile and compressive strengths. By following an approach analogous to that followed in the theory of bending of elastic beams, the equilibrium problem for the arch leads to a free-boundary, nonlinear differential problem. An approximate solution to such problem can be pursued by means of an ad hoc iterative procedure, illustrated in detail herein. The results obtained in three case studies are compared with some numerical and experimental results available in the literature. In addition, the case of an actual arch undergoing spreading of the springings is considered, and the distribution and possible evolution of the cracking pattern discussed.


Masonry arches Nonlinear elastic analysis Collapse 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Heyman J (1966) The stone skeleton. Int J Solids Struct 2:249–279CrossRefGoogle Scholar
  2. 2.
    Heyman J (1982) The masonry arch. Ellis Horwood Ltd., ChichesterGoogle Scholar
  3. 3.
    Blasi C, Foraboschi P (1994) Analytical approach to collapse mechanism of circular masonry arch. J Struct Eng 120(8):2288–2309CrossRefGoogle Scholar
  4. 4.
    Como M (1992) Equilibrium and collapse of masonry bodies. Meccanica 27(3):185–194CrossRefMATHGoogle Scholar
  5. 5.
    Lucchesi M, Padovani C, Pasquinelli G, Zani N (1997) On the collapse of masonry arches. Meccanica 32:327–346MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Gilbert M (2001) RING: a 2D rigid-block analysis program for masonry arch bridges. In: Abdunur C (ed) Arch‘01-third international conference on arch bridges, Presses de l’École Nationale des Ponts et Chaussées, Paris, pp 459–464Google Scholar
  7. 7.
    Rizzi E, Rusconi F, Cocchetti G (2014) Analytical and numerical DDA analysis on the collapse mode of circular masonry arches. Eng Struct 60:241–257CrossRefGoogle Scholar
  8. 8.
    Cavicchi A, Gambarotta L (2005) Collapse analysis of masonry bridges taking into account arch–fill interaction. Eng Struct 27:605–615CrossRefGoogle Scholar
  9. 9.
    Pippard AJS (1948) The approximate estimation of safe loads on masonry bridges. Civil engineer in war. Inst Civ Eng 1:365–372Google Scholar
  10. 10.
    Department of Transport (1997) Design manual for roads and bridges, vol 3, section 4, part 4Google Scholar
  11. 11.
    Signorini A (1925) Un teorema di esistenza e unicità nella statica dei materiali poco resistenti a trazione. Rend Accad Lincei Ser VI 2:401–406MATHGoogle Scholar
  12. 12.
    Signorini A (1925) Sulla pressoflessione delle murature. Rend Accad Lincei Ser VI 2:484–489MATHGoogle Scholar
  13. 13.
    Castigliano CAP (1879) Theorie de l’equilibre des systeme elastique et ses application. In: Negro AF (ed) Torino, ItalyGoogle Scholar
  14. 14.
    Di Pasquale S (1984) Statica dei solidi murari teoria ed esperienze. Atti Dip. Costruzioni, n. 27, Università di FirenzeGoogle Scholar
  15. 15.
    Del Piero G (1989) Constitutive equations and compatibility conditions of the external loads for linear elastic masonry-like materials. Meccanica 24:150–162MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Bennati S, Padovani C (1997) Some nonlinear elastic solutions for masonry solids. Mech Struct Mach 25(2):243–266CrossRefGoogle Scholar
  17. 17.
    Crisfield MA (1985) Finite element mechanism methods for the analysis of masonry and brickwork arches. In: Transport and road research laboratory, contractor report 19, Crowthorne, UKGoogle Scholar
  18. 18.
    Molins C, Roca P (1998) Capacity of masonry arches and spatial frames. J Struct Eng 124(6):653–663CrossRefGoogle Scholar
  19. 19.
    Ng KH, Fairfield CA, Sibbald A (1999) Finite-element analysis of masonry arch bridges. Proc Inst Civ Eng Struct Build 134:119–127CrossRefGoogle Scholar
  20. 20.
    Kumar P, Bhandari NM (2005) Nonlinear finite element analysis of masonry arches for prediction of collapse load. Struct Eng Int 3:166–174CrossRefGoogle Scholar
  21. 21.
    Thavalingam A, Bicanic N, Robinson JI, Ponniah DA (2001) Computational framework for discontinuous modelling of masonry arch bridges. Comput Struct 79:1821–1830CrossRefGoogle Scholar
  22. 22.
    Orlandi D (1992) Analisi non lineare di strutture ad arco in muratura. PhD Thesis, University of PisaGoogle Scholar
  23. 23.
    Bennati S, Barsotti R (2000) Nonlinear analysis and collapse of masonry arches. In: Becchi A, Corradi M, Foce F (eds) Hommage à Edoardo Benvenuto, Actes du Colloque International: Gênes, 29–30 novembre, 1 décembre 1999, Birkhäuser, BaselGoogle Scholar
  24. 24.
    Bennati S, Barsotti R (2001) Optimum radii of circular masonry arches. In: Abdunur C (ed) Arch‘01-third international conference on arch bridges, Presses de l’École Nat. des Ponts et Chaussées, Paris, pp 489–498Google Scholar
  25. 25.
    Fanning PJ, Boothby TE, Roberts BJ (2001) Longitudinal and transverse effects in masonry arch assessment. Constr Build Mater 15:51–60CrossRefGoogle Scholar
  26. 26.
    McNary W, Abrams DP (1985) Mechanics of masonry in compression. J Struct Eng 111(4):857–870CrossRefGoogle Scholar
  27. 27.
    AlShebani MM, Sinha SN (1999) Stress-strain characteristics of brick masonry under uniaxial cyclic loading. J Struct Eng 125(6):600–604CrossRefGoogle Scholar
  28. 28.
    Page AW (1981) The biaxial compressive strength of brick masonry. Proc Inst Civ Eng Part 2 71:893–906Google Scholar
  29. 29.
    Rosson BT, Søyland K, Boothby TE (1998) Inelastic behaviour of sand-lime mortar joint masonry arches. Eng Struct 20(1–2):14–24CrossRefGoogle Scholar
  30. 30.
    Lourenço PB, Rots JG, Blaauwendraad J (1998) Continuum model for masonry: parameter estimation and validation. J Struct Eng 124(6):1045–1050CrossRefGoogle Scholar
  31. 31.
    Binda L, Fontana A, Frigerio G (1988) Mechanical behaviour of brick masonries derived from unit and mortar characteristics. In: Proceedings of 8th international brick and block masonry conference, pp 205–216Google Scholar
  32. 32.
    Cavaleri L, Failla A, La Mendola L, Papia M (2005) Experimental and analytical response of masonry elements under eccentric vertical loads. Eng Struct 27:1175–1184CrossRefGoogle Scholar
  33. 33.
    Brencich A, Corradi C, Gambarotta L (2008) Eccentrically loaded brickwork: theoretical and experimental results. Eng Struct 30:3629–3643CrossRefGoogle Scholar
  34. 34.
    Domède N, Pons G, Sellier A, Fritih Y (2009) Mechanical behaviour of ancient masonry. Mater Struct 42:123–133CrossRefGoogle Scholar
  35. 35.
    Drougkas A, Roca P, Molins C (2015) Numerical prediction of the behavior, strength and elasticity of masonry in compression. Eng Struct 90:15–28CrossRefGoogle Scholar
  36. 36.
    Aita D, Barsotti R, Bennati S (2016) Explicit solutions for depressed masonry arches loaded until collapse—part I: a one-dimensional nonlinear elastic model. Meccanica. doi: 10.1007/s11012-016-0420-4 MATHGoogle Scholar
  37. 37.
    Aita D, Barsotti R, Bennati S (2016) Explicit solutions for depressed masonry arches loaded until collapse. Part II: a solution method for statically indeterminate systems. doi: 10.1007/s11012-016-0440-0
  38. 38.
    Melbourne C, Gilbert M (1995) Behaviour of multiring brickwork arch bridges. Struct Eng 73(3):39–47Google Scholar
  39. 39.
    Bridle RJ, Hughes TG (1990) An energy method for arch bridge analysis. Proc Inst Civ Eng Part 2(89):375–385Google Scholar
  40. 40.
    Brencich A, De Francesco U (2004) Assessment of multispan masonry arch bridges. I: simplified approach. J Bridge Eng 9(6):582–590CrossRefGoogle Scholar
  41. 41.
    Audenaert A, Peremans H, Reniers G (2007) An analytical model to determine the ultimate load on masonry arch bridges. J Eng Math 59:323–336CrossRefMATHGoogle Scholar
  42. 42.
    Aita D, Barsotti R, Bennati S (2012) Equilibrium of pointed, circular, and elliptical masonry arches bearing vertical walls. J Struct Eng 138(7):880–888CrossRefGoogle Scholar
  43. 43.
    Clemente P, Occhiuzzi A, Raithel A (1995) Limit behavior of stone arch bridges. J Struct Eng 121(7):1045–1050CrossRefGoogle Scholar
  44. 44.
    Hendry AW, Davis SR, Royles R (1985) Test on stone masonry arch at Bridgemill–Girvan. Transport and Road Research Laboratory, Contractor Report 7, Crowthorne, UKGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Civil and Industrial EngineeringUniversity of PisaPisaItaly

Personalised recommendations