Skip to main content
Log in

Bi and trifilar suspension centering correction

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

For accurate measurements of moments of inertia, or gyradii, about a vertical axis the offset of the center of mass of the suspended body from the symmetry axis of the suspension is required. A number of simple methods of determining this offset from yaw period measurements are described and experimentally shown to provide results of precision equal or better than suspension line tension measurements and thus eliminating the necessity for the use of strain gauges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jardin MR, Mueller ER (2009) Optimized measurements of unmanned-air-vehicle mass moment of inertia with a bifilar pendulum. J Aircr 46:763–775

    Article  Google Scholar 

  2. McClelland WA (2006) Inertial measurement and dynamic stability analysis of a radio-controlled jointed-wing aircraft. In: Aeronautical Engineering, Air Force Institute of Technology, Wright- Patterson Air Force Base, ohio

  3. Halder A et al (2008) Determination of inertial characteristics of a high wing unmanned air vehicle. IE(I) J AS 89:3–8

    Google Scholar 

  4. Bussamra, FLdS, Vilchez CMM, Santos JC (2009) Experimental determination of unmanned aircraft inertial properties. In: 3rd CTA-DLR workshop on data analysis and flight control, 2009 Brazilian symposium on aerospace eng. & applications, S. J. Campos, SP, Brazil

  5. Green MW (1927) Measurement of the moments of inertia of full scale aircraft. In: Technical notes National Advisory Committee for Aeronautics. Langley Memorial Aeronautical Laboratory, Washington, p 1–18

  6. Miller MP (1930) An accurate method of measuring the moments of inertia of airplanes. In: Technical notes National Advisory Committee for Aeronautics, 351, p 26

  7. de Jong RC, Mulder JA (1987) Accurate estimate of aircraft inertia characteristics from a single suspension experiment. J. Aircr 24(6):362–370

    Article  Google Scholar 

  8. Fennell LJ (1967) Measurement of the moments of inertia of a Handley Page HP115 aircraft. Aeronautical Research Council, Her Majesty`s Stationary Office, London

  9. Hou Z-C, Lv Y, Lao Y-X (2009) A new trifilar pendulum approach to identify all inertia parameters of a rigid body or assembly. Mech Mach Theory 44(6):1270–1280

    Article  MATH  Google Scholar 

  10. Hinrichsen PF (1991) Gyradius measurement of Olympic class Dinghies and Keelboats. In: The tenth Cheasapeake Sailing Yacht Symposium. SNAME, the Chesapeake Bay Yacht Racing Association, Annapolis, p 1–16

  11. Hinrichsen PF (2014) Bifilar suspension measurement of boat inertia parameters. J Sailboat Technol 1:1–36

    MathSciNet  Google Scholar 

  12. Williams H (2007) Measuring the inertia tensor. In IMA Mathematics 2007 Conference. IMA, Manchester

  13. Bois JLd, Lieven N, Adhikari S (2009) Error analysis in trifilar inertia measurements. Exp Mech 49:533–540

    Article  Google Scholar 

  14. Kane TR, Tseng G-T (1967) Dynamics of the bifilar pendulum. Int J Mech Sci 9(2):83–96

    Article  MATH  Google Scholar 

  15. Swart W (2016) Determining the moments of inertia using a bifilar pendulum. In: TECHNISCHE WISKUNDE, Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Delft Institute of Applied Mathematics, Delft, Nederland

  16. Korr AL, Hyer P (1962) A trifilar pendulum for the determination of moments of inertia. Armed services technical information agency report R-1653. Frankford Arsenal, Philadelphia, PA, pp 1–51. https://www.dtic.mil/dtic/tr/fulltext/u2/287534.pdf

  17. Swank AJ (2012) Precision mass property measurements using a five-wire torsion pendulum. NASA Glen Resaearch Center, Cleveland. https://www.aspe.net/publications/Short%20Abstracts%2012A/3599.pdf

  18. Swank AJ (2009) Gravitational mass attraction measurement for drag-free references In: Aeronautics and Astronautics. http://gradworks.umi.com/3364514.pdf. Stanford University, Stamford, p 276

  19. Kane TR, Levinson DA (2005) Dynamics theory and applications. The Internet-First University Press, Ithaca, p 380

  20. Newman FH, Searle VH (1951) The general properties of matter, 4th edn. Edward Arnold & Co, London, p 431

    Google Scholar 

  21. Hinrichsen PF (2016) In plane oscillation of a bifilar pendulum. Phys Educ 51(6):1–6

    Article  Google Scholar 

  22. Crede CE (1948) Determining moment of inertia. Mach Design 138

  23. Cromer A (1995) Many oscillations of a rigid rod. Am J Phys 63(2):112–121

    Article  ADS  Google Scholar 

  24. Marion JB (1970) Classical dynamics, 2nd edn. Academic Press, New York, p 573

    Google Scholar 

  25. Yu G (2011) NODE +. Variable, Inc. 100 Cherokee Blvd. Suite 327, Chattanooga, TN 37405, USA. http://variableinc.com/products/

  26. Scientific, P., Pasco Force Sensor Cl-6537. 2000, Pasco Scientific: 10101 Foothills Blvd., Roseville, CA 95747-7100

  27. SPSS Science (2000) TableCurve 2D. http://www.sigmaplot.com/products/tablecurve2d/tablecurve2d.php

  28. Hinrichsen PF (2015) Analysis of bi and trifilar suspension oscillations. Researchgate, https://www.researchgate.net/profile/Peter_Hinrichsen3/publications. p. 64

  29. Genta G, Delprete C (1994) Some considerations on the experimental determination of moments of inertia. Meccanica 29:125–141

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter F. Hinrichsen.

Appendix: Trifilar suspension with offset center of mass

Appendix: Trifilar suspension with offset center of mass

When the center of mass is offset from the symmetry axis of a trifilar suspension by b = βd at an angle ψ, see Fig. 3b, the line tensions become:

$$\begin{aligned} T_{1} & = \frac{{M_{T} g}}{3}\left\{ {1 + 2\beta \text{Cos} \psi } \right\} \\ T_{2} & = \frac{{M_{T} g}}{3}\left\{ {1 - \beta \left( {\text{Cos} \psi - \sqrt 3 \text{Sin} \psi } \right)} \right\} \\ T_{3} & = \frac{{M_{T} g}}{3}\left\{ {1 - \beta \left( {\text{Cos} \psi + \sqrt 3 \text{Sin} \psi } \right)} \right\} \\ \end{aligned}$$
(23)

Then for a small yaw rotation θ about the symmetry axis the horizontal components and net horizontal force \(\bar{F}_{\varSigma } = \sum\limits_{i} {\bar{F}_{i} }\) are:

$$\begin{aligned} \bar{F}_{1} & = T_{1} \frac{\theta d}{l}\left( \begin{aligned} \mathop {}\limits^{{}} 0 \hfill \\ - 1 \hfill \\ \end{aligned} \right) = \frac{{M_{T} gd}}{3l}\theta \left\{ {1 + 2\beta \text{Cos} \psi } \right\}\left( \begin{aligned} \mathop {}\limits^{{}} 0 \hfill \\ - 1 \hfill \\ \end{aligned} \right) \\ \bar{F}_{2} & = T_{2} \frac{\theta d}{l}\left( \begin{aligned} {{\sqrt 3 } \mathord{\left/ {\vphantom {{\sqrt 3 } 2}} \right. \kern-0pt} 2} \hfill \\ {{\mathop {}\limits^{{}} 1} \mathord{\left/ {\vphantom {{\mathop {}\limits^{{}} 1} 2}} \right. \kern-0pt} 2} \hfill \\ \end{aligned} \right) = \frac{{M_{T} gd}}{3l}\theta \left\{ {1 - \beta \left( {\text{Cos} \psi - \sqrt 3 \text{Sin} \psi } \right)} \right\}\left( \begin{aligned} {{\sqrt 3 } \mathord{\left/ {\vphantom {{\sqrt 3 } 2}} \right. \kern-0pt} 2} \hfill \\ {{\mathop {}\limits^{{}} 1} \mathord{\left/ {\vphantom {{\mathop {}\limits^{{}} 1} 2}} \right. \kern-0pt} 2} \hfill \\ \end{aligned} \right) \\ \bar{F}_{3} & = T_{3} \frac{\theta d}{l}\left( \begin{aligned} {{ - \sqrt 3 } \mathord{\left/ {\vphantom {{ - \sqrt 3 } 2}} \right. \kern-0pt} 2} \hfill \\ {{\mathop {}\limits^{{}} \mathop {}\limits^{{}} 1} \mathord{\left/ {\vphantom {{\mathop {}\limits^{{}} \mathop {}\limits^{{}} 1} 2}} \right. \kern-0pt} 2} \hfill \\ \end{aligned} \right) = \frac{{M_{T} gd}}{3l}\theta \left\{ {1 - \beta \left( {\text{Cos} \psi + \sqrt 3 \text{Sin} \psi } \right)} \right\}\left( \begin{aligned} {{ - \sqrt 3 } \mathord{\left/ {\vphantom {{ - \sqrt 3 } 2}} \right. \kern-0pt} 2} \hfill \\ {{\mathop {}\limits^{{}} \mathop {}\limits^{{}} 1} \mathord{\left/ {\vphantom {{\mathop {}\limits^{{}} \mathop {}\limits^{{}} 1} 2}} \right. \kern-0pt} 2} \hfill \\ \end{aligned} \right) \\ \bar{F}_{\varSigma } & = \frac{{M_{T} gb}}{l}\left( \begin{aligned} + \text{Sin} \psi \hfill \\ - \text{Cos} \psi \hfill \\ \end{aligned} \right)\theta \\ \end{aligned}$$
(24)

Thus \(\bar{F}_{\varSigma }\) is perpendicular to the center of mass offset \(\bar{b}\) and of magnitude \(F_{\varSigma } = \left( {{{M_{T} gb} \mathord{\left/ {\vphantom {{M_{T} gb} l}} \right. \kern-0pt} l}} \right)\theta\) i.e. proportional to the yaw angle θ and thus will oscillate with the yaw frequency and excite sway-surge oscillations. If the suspension spacing d is close to the yaw gyradius k yT then the sway-surge frequency is close to the yaw frequency which will be resonantly excited. The development of sway-surge oscillation, after initial yaw rotation about the symmetry axis, is an indication of an offset center of mass, with the offset perpendicular to the sway-surge oscillation.

The torque \(\bar{\varGamma }_{CM}\) about the offset center of mass can be expressed as that about the symmetry axis plus the vector product of \(\bar{b}\) and \(\bar{F}_{\varSigma }\) as:

$$\begin{aligned} \bar{\varGamma }_{CM} & = \bar{d}_{11} \times \bar{F}_{1} + \bar{d}_{22} \times \bar{F}_{2} + \bar{d}_{33} \times \bar{F}_{3} - \bar{b} \times \bar{F}_{\varSigma } \\ \bar{\varGamma }_{CM} & = \left\{ {bF_{\varSigma } - d\left( {F_{1} + F_{2} + F_{3} } \right)} \right\}\hat{k} \\ \end{aligned}$$
(25)

Then substituting Eq. (24) leads to a torque about the center of mass of magnitude \(\varGamma_{CM} = {{M_{T} g\left( {d^{2} - b^{2} } \right)\theta } \mathord{\left/ {\vphantom {{M_{T} g\left( {d^{2} - b^{2} } \right)\theta } l}} \right. \kern-0pt} l}\) and so a period of small angle yaw oscillation of \(T_{yo} = 2\pi k_{yT} \sqrt {{l \mathord{\left/ {\vphantom {l {g\left( {d^{2} - b^{2} } \right)}}} \right. \kern-0pt} {g\left( {d^{2} - b^{2} } \right)}}}\).

For rotations about any axis other than the symmetry axis the horizontal displacements of the suspension points are not equal, so the angular displacements ϕ i of the suspension lines, and hence the vertical displacements of the suspension points, are not equal, as becomes immediately obvious if the rotation is about one of the suspension lines. Thus the motion includes roll and pitch and the gyradii k r , and k p , as well as the center of mass height are required for a full description of the motion. Nonparallel suspensions exacerbate this problem. However, the roll-pitch angle is \(\varphi \approx {{ - b\theta^{2} } \mathord{\left/ {\vphantom {{ - b\theta^{2} } l}} \right. \kern-0pt} l}\) and the vertical motion, which is the source of the potential energy, has an acceleration \(\ddot{z} = {{\left( {d^{2} - b^{2} } \right)\left( {\dot{\theta }^{2} + \theta \ddot{\theta }} \right)} \mathord{\left/ {\vphantom {{\left( {d^{2} - b^{2} } \right)\left( {\dot{\theta }^{2} + \theta \ddot{\theta }} \right)} l}} \right. \kern-0pt} l}\), which are both small for l > d and of second order in θ. Thus the tensions can be assumed to have approximately their static values and second order effects due to the vertical, sway, surge, roll and pitch motions can to first approximation be ignored [29].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hinrichsen, P.F. Bi and trifilar suspension centering correction. Meccanica 53, 21–32 (2018). https://doi.org/10.1007/s11012-017-0700-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-017-0700-7

Keywords

Navigation