Advertisement

Meccanica

, Volume 53, Issue 7, pp 1737–1755 | Cite as

Level set-based generation of representative volume elements for the damage analysis of irregular masonry

  • Thierry J. Massart
  • Bernard Sonon
  • Karim Ehab Moustafa Kamel
  • Leong Hien Poh
  • Gang Sun
New Trends in Mechanics of Masonry

Abstract

Computational homogenization has been used extensively over the past two decades for the analysis of masonry structures based on various averaging schemes (periodic homogenization, transformation field analysis,...), focusing on regular periodic masonry. Irregular masonry has subsequently also been scrutinized using multiscale approaches. In such efforts, an efficient strategy is required for the generation and meshing of realistic representative volume elements (RVEs) geometries. In complement to existing generation approaches, the present contribution deals with a level set-based methodology to generate irregular masonry RVE geometries. Starting from inclusion-based RVEs, combinations of distance fields are used to produce typical geometries of irregular masonry RVEs. The resulting geometries are described by implicit functions. Such implicit geometry descriptions are next exploited in an automated procedure for producing high quality conformal 2D finite element meshes on implicit geometries. This automated RVE generation and discretization procedure is then illustrated by producing failure envelopes for irregular masonry, using an implicit gradient damage formulation. The interest of recently developed gradient models with decreasing interaction length parameters is also illustrated on a specific example.

Keywords

Irregular masonry Computational homogenization Representative volume element generation Level sets Damage modelling 

Notes

Acknowledgements

The third author acknowledges the support of FRIA under Grant No. 29340757. The first and second authors acknowledge the support of FRS-FNRS under Grant PDR No. 19471061.

Funding

The third author was funded by FRIA (Grant No. 29340757). The first and second authors benefited from the support of FRS-FNRS (Grant PDR T.1002.14F—No. 19471061).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Lourenço PB (1996) Computational strategies for masonry structures. Ph.D. Dissertation, Delft University of Technology, Delft, The NetherlandsGoogle Scholar
  2. 2.
    Lourenço PB, De Borst R, Rots JG (1997) A plane stress softening plasticity model for orthotropic materials. Int J Numer Meth Eng 40(21):4033–4057CrossRefMATHGoogle Scholar
  3. 3.
    Berto L, Saetta A, Scotta R, Vitaliani R (2002) An orthotropic damage model for masonry structures. Int J Numer Meth Eng 55(2):127–157CrossRefMATHGoogle Scholar
  4. 4.
    Lourenço PB, Rots JG (1997) Multisurface interface model for analysis of masonry structures. J Eng Mech 123(7):660–668CrossRefGoogle Scholar
  5. 5.
    Alfano G, Sacco E (2006) Combining interface damage and friction in a cohesive-zone model. Int J Numer Meth Eng 68(5):542–582MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Pegon P, Anthoine A (1997) Numerical strategies for solving continuum damage problems with softening: application to the homogenization of masonry. Comput Struct 64(1–4):623–642CrossRefMATHGoogle Scholar
  7. 7.
    Massart TJ, Peerlings RHJ, Geers MGD, Gottcheiner S (2005) Mesoscopic modeling of failure in brick masonry accounting for three-dimensional effects. Eng Fract Mech 72(8):1238–1253CrossRefGoogle Scholar
  8. 8.
    Lofti H, Shing P (1994) Interface model applied to fracture of masonry structures. J Struct Eng 120(1):63–80CrossRefGoogle Scholar
  9. 9.
    Cecchi A, Sab K (2002) A multi-parameter homogenization study for modelling elastic masonry. Eur J Mech A Solids 21:249–268MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Cecchi A, Sab K (2002) Out of plane model for heterogeneous periodic materials: the case of masonry. Eur J Mech A Solids 21:715–746MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Cecchi A, Sab K (2007) A homogenized Reissner–Mindlin model for orthotropic periodic plates. Application to brickwork panels. Int J Solids Struct 44:6055–6079CrossRefMATHGoogle Scholar
  12. 12.
    Anthoine A (1995) Derivation of the in-plane elastic characteristics of masonry through homogenization theory. Int J Solids Struct 32(2):137–163CrossRefMATHGoogle Scholar
  13. 13.
    Peerlings RHJ, de Borst R, Brekelmans WAM, de Vree JHP (1996) Gradient enhanced damage for quasi-brittle materials. Int J Numer Methods Eng 39:3391–3403CrossRefMATHGoogle Scholar
  14. 14.
    Massart TJ, Peerlings RHJ, Geers MGD (2004) Mesoscopic modeling of failure and damage-induced anisotropy in brick masonry. Eur J Mech A Solids 23(5):719–735CrossRefMATHGoogle Scholar
  15. 15.
    Addessi D, Sacco E (2014) A kinematic enriched plane state formulation for the analysis of masonry panels. Eur J Mech A Solids 44:188–200CrossRefGoogle Scholar
  16. 16.
    Addessi D, Sacco E (2016) Enriched plane state formulation for nonlinear homogenization of in-plane masonry wall. Meccanica 51(11):2891–2907MathSciNetCrossRefGoogle Scholar
  17. 17.
    Dvorak GJ (1992) Transformation field analysis of inelastic composite materials. In: Proceedings of the Royal Society A, vol 437Google Scholar
  18. 18.
    Sacco E (2009) A nonlinear homogenization procedure for periodic masonry. Eur J Mech A Solids 28:209–222CrossRefMATHGoogle Scholar
  19. 19.
    Chettah A, Mercatoris BCN, Sacco E, Massart TJ (2013) Localisation analysis in masonry using transformation field analysis. Eng Fract Mech 110:168–188CrossRefGoogle Scholar
  20. 20.
    Marfia S, Sacco E (2012) Multiscale damage contact-friction model for periodic masonry walls. Comput Methods Appl Mech Eng 205–208:189–203ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Sepe V, Marfia S, Sacco E (2013) A nonuniform TFA homogenization technique based on piecewise interpolation functions of the inelastic field. Int J Solids Struct 50:725–742CrossRefGoogle Scholar
  22. 22.
    Luciano R, Sacco E (1997) Homogenization technique and damage model for old masonry material. Int J Solids Struct 34(24):3191–3208MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    De Bellis ML, Addessi D (2011) A Cosserat based multiscale model for masonry structures. Int J Multiscale Comput Eng 9(5):543–563CrossRefGoogle Scholar
  24. 24.
    Addessi D, Sacco E, Paolone A (2010) Cosserat model for periodic masonry deduced by nonlinear homogenization. Eur J Mech A Solids 29:724–737CrossRefGoogle Scholar
  25. 25.
    Massart TJ, Peerlings RHJ, Geers MGD (2007) An enhanced multi-scale approach for masonry wall computations with localization of damage. Int J Numer Methods Eng 69(5):1022–1059CrossRefMATHGoogle Scholar
  26. 26.
    Mercatoris BCN, Massart TJ (2009) Assessment of periodic homogenization-based multiscale computational schemes for quasi-brittle structural failure. Int J Multiscale Comput Eng 7(2):153–170CrossRefGoogle Scholar
  27. 27.
    Mercatoris BCN, Bouillard P, Massart TJ (2009) Multi-scale detection of failure in planar masonry thin shells using computational homogenisation. Eng Fract Mech 76(4):479–499CrossRefGoogle Scholar
  28. 28.
    Mercatoris BCN, Massart TJ (2011) A coupled two-scale computational scheme for the failure of periodic quasi-brittle thin planar shells and its application to masonry. Int J Numer Methods Eng 85:1177–1206CrossRefMATHGoogle Scholar
  29. 29.
    Berke PZ, Peerlings RHJ, Massart TJ, Geers MGD (2014) A homogenization-based quasi-discrete method for the fracture of heterogeneous materials. Comput Mech 53:909–923MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Cecchi A, Sab K (2009) Discrete and continuous models for in plane loaded random elastic brickwork. Eur J Mech A Solids 28:610625CrossRefMATHGoogle Scholar
  31. 31.
    Cecchi A, Sab K (2009) A homogenized Love–Kirchhoff model for out-of-plane loaded random 2D lattices: application to quasi-periodic brickwork panels. Int J Solids Struct 46:2907–2919MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Cluni F, Gusella V (2004) Homogenization of non-periodic masonry structures. Int J Solids Struct 41:1911–1923MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Milani G, Esquivel YW, Lourenco PB, Riveiro B, Oliveira DV (2013) Characterization of the response of quasi-periodic masonry: geometrical investigation, homogenization and application to the Guimares castle, Portugal. Eng Struct 56:621–641CrossRefGoogle Scholar
  34. 34.
    Sorour M, Elmenshawi A, Parsekian G, Mufti A, Jaeger LG, Duchesne DPJ, Paquette J, Shrive N (2011) An experimental programme for determining the characteristics of stone masonry walls. Can J Civ Eng 38:1204–1215CrossRefGoogle Scholar
  35. 35.
    Elmenshawi A, Sorour M, Mufti A, Jaeger LG, Shrive N (2010) In-plane seismic behaviour of historic stone masonry. Can J Civ Eng 37:465–476CrossRefGoogle Scholar
  36. 36.
    Milani G, Lourenço PB (2010) A simplified homogenized limit analysis model for randomly assembled blocks out-of-plane loaded. Comput Struct 88:690–717CrossRefMATHGoogle Scholar
  37. 37.
    Feo L, Luciano R, Misseri G, Rovero L (2016) Irregular stone masonries: analysis and strengthening with glass fibre reinforced composites. Compos B 92:84–93CrossRefGoogle Scholar
  38. 38.
    Cundari GA, Milani G (2013) Homogenized and heterogeneous limit analysis model for pushover analysis of ancient masonry walls with irregular texture. Int J Archit Herit 7:303–338CrossRefGoogle Scholar
  39. 39.
    Milosevic J, Sousa Gago A, Lopes M, Bento R (2013) Experimental assessment of shear strength parameters on rubble stone masonry specimens. Constr Build Mater 47:1372–1380CrossRefGoogle Scholar
  40. 40.
    Milosevic J, Sousa Gago A, Lopes M, Bento R (2015) In-plane seismic response of rubble stone masonry specimens by means of static cyclic tests. Constr Build Mater 82:919CrossRefGoogle Scholar
  41. 41.
    Vasconcelos G, Lourenço PB (2009) In-plane experimental behavior of stone masonry walls under cyclic loading. J Struct Eng 135(10):1269–1277CrossRefGoogle Scholar
  42. 42.
    Senthivel R, Lourenço PB (2009) Finite element modelling of deformation characteristics of historical stone masonry shear walls. Eng Struct 31:1930–1943CrossRefGoogle Scholar
  43. 43.
    Zeman J, Šejnoha M (2007) From random microstructures to representative volume elements. Modell Simul Mater Sci Eng 15(4):S325–S335ADSCrossRefGoogle Scholar
  44. 44.
    Cavalagli N, Cluni F, Gusella V (2013) Evaluation of a statistically equivalent periodic unit cell for a quasi-periodic masonry. Int J Solids Struct 50:4226–4240CrossRefGoogle Scholar
  45. 45.
    Falsone G, Lombardo M (2007) Stochastic representation of the mechanical properties of irregular masonry structures. Int J Solids Struct 44:8600–8612CrossRefMATHGoogle Scholar
  46. 46.
    Gusella V, Cluni F (2006) Random field and homogeization for masonry with nonperiodic microstructure. J Mech Mater Struct 1(2):357–386CrossRefGoogle Scholar
  47. 47.
    Spence SMJ, Gioffre M, Grigoriu MD (2008) Probabilistic models and simulation of irregular masonry walls. J Eng Mech 134(9):750–762CrossRefGoogle Scholar
  48. 48.
    Sonon B, Francois B, Massart TJ (2012) A unified level set based methodology for fast generation of complex microstructural multi-phase RVEs. Comput Methods Appl Mech Eng 223–224:103–122CrossRefGoogle Scholar
  49. 49.
    Bernard O, Friboulet D, Thevenaz P, Unser M (2009) Variational B-spline level-set: a linear filtering approach for fast deformable model evolutions. IEEE Trans Image Process 18(6):1179–1191ADSMathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Poh LH, Sun G (2016) Localizing gradient damage model with decreasing interactions. Int J Numer Methods Eng. doi: 10.1002/nme.5364 (in press)
  51. 51.
    Sonon B, Francois B, Massart TJ (2015) An advanced approach for the generation of complex cellular material representative volume elements using distance fields and level sets. Comput Mech 56(2):221–242MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Persson PO, Strang G (2004) A simple mesh generator in MATLAB. SIAM Rev 46(2):329–345ADSMathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Ehab Moustafa Kamel K, Sonon B, Massart TJ, An integrated approach for the generation and conformal discretization of complex inclusion-based microstructures (in preparation)Google Scholar
  54. 54.
    Lo DSH (2015) Finite element mesh generation. CRC Press, Boca RatonCrossRefMATHGoogle Scholar
  55. 55.
    Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. SIG, NewingtonGoogle Scholar
  56. 56.
    Schewchuk JR (1997) Constrained delaunay tetrahedralizations and provably good boundary recovery. In: IMRGoogle Scholar
  57. 57.
    Peerlings RHJ, Geers MGD, de Borst R, Brekelmans WAM (2001) A critical comparision of nonlocal and gradient-enhanced softening continua. Int J Solids Struct 38:7723–7746CrossRefMATHGoogle Scholar
  58. 58.
    Bazant ZP, Jirasek M (2002) Nonlocal integral formulations of plasticity and damage: survey of progress. J Eng Mech 128(11):1119–1149CrossRefGoogle Scholar
  59. 59.
    Peerlings RHJ, Massart TJ, Geers MGD (2004) A thermodynamically motivated implicit gradient damage framework and its application to brick masonry cracking. Comput Methods Appl Mech Eng 193:3403–3417ADSCrossRefMATHGoogle Scholar
  60. 60.
    Geers MGD, de Borst R, Brekelmans WAM, Peerlings RHJ (1998) Strain-based transient-gradient damage model for failure analyses. Comput Methods Appl Mech Eng 160:133–153ADSCrossRefMATHGoogle Scholar
  61. 61.
    Simone A, Askes H, Sluys LJ (2004) Incorrect initiation and propagation of failure in non-local and gradient-enhanced media. Int J Solids Struct 41:351–363CrossRefMATHGoogle Scholar
  62. 62.
    Forest S (2009) Micromorphic approach for gradient elasticity, viscoplasticity and damage. J Eng Mech 135(3):117–131CrossRefGoogle Scholar
  63. 63.
    Sun G, Poh LH (2016) Homogenization of intergranular fracture towards a transient gradient damage model. J Mech Phys Solids 95:374–392ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    Massart TJ, Peerlings RHJ, Geers MGD (2007) Structural damage analysis of masonry walls using computational homogenization. Int J Damage Mech 16(2):199–226CrossRefGoogle Scholar
  65. 65.
    Geers MGD (1999) Enhanced solution control for physically and geometrically non-linear problems. Part I—the subplane control approach. Int J Numer Methods Eng 46:177–204CrossRefMATHGoogle Scholar
  66. 66.
    Massart TJ, Peerlings RHJ, Geers MGD (2005) A dissipation-based control method for the multi-scale modelling of quasi-brittle materials. C R Mecanique 527:333–521Google Scholar
  67. 67.
    Borri A, Corradi M, Castori G, De Maria A (2015) A method for the analysis and classification of historic masonry. Bull Earthq Eng 13:2647–2665CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Thierry J. Massart
    • 1
  • Bernard Sonon
    • 1
  • Karim Ehab Moustafa Kamel
    • 1
  • Leong Hien Poh
    • 2
  • Gang Sun
    • 2
  1. 1.Building, Architecture and Town PlanningUniversite libre de BruxellesBrusselsBelgium
  2. 2.Department of Civil and Environmental EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations