Skip to main content
Log in

Optimal design of a beam subject to bending: a basic application

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The minimisation of both the mass and deflection of a beam in bending is addressed in the paper. To solve the minimisation problem, a multi-objective approach is adopted by imposing the Fritz John conditions for Pareto-optimality. Constraints on the maximum stress and elastic stability (buckling) of the structure are taken into account. Additional constraints are set on the beam cross section dimensions. Three different cross sections of the beam are analysed and compared, namely the hollow square, the I-shaped and the hollow rectangular cross sections. The analytical expressions of the Pareto-optimal sets are derived. As expected, the I-shaped beam exhibits the best compromise in structural performance, which is related on the particular loading considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Askar S, Tiwari A (2009) Finding exact solutions for multi-objective optimisation problems using a symbolic algorithm. In: IEEE Congress on evolutionary computation

  2. Askar S, Tiwari A (2011) Finding innovative design principles for multiobjective optimization problems. IEEE Trans Syst Man Cybern Part C Appl Rev 41(4):554–559. doi:10.1109/TSMCC.2010.2081666

    Article  Google Scholar 

  3. Benfratello S, Giambanco F, Palizzolo L, Tabbuso P (2013) Optimal design of steel frames accounting for buckling. Meccanica 48:2281–2298

    Article  MATH  MathSciNet  Google Scholar 

  4. Björck A (1996) Numerical methods for least squares problems. Society for Industrial and Applied Mathematics, Philadelphia

    Book  MATH  Google Scholar 

  5. Dutta J, Lalitha CS (2006) Bounded sets of kkt multipliers in vector optimization. J Glob Optim 36:425–437

    Article  MATH  MathSciNet  Google Scholar 

  6. EN-10034 (1995) EN 10034: Structural steel I and H sections. Tolerances on shapes and dimensions

  7. EN-10219-2 (2006) EN 10219-2: Cold formed welded structural hollow sections of non-alloy and fine grain steels—tolerances, dimensions and sectional properties

  8. EN-1993-1-1 (2005) EN 1993-1-1 Eurocode3: Design of steel structures-Part 1-1: general rules and rules for buildings

  9. Gobbi M, Levi F, Mastinu G (2006) Multi-objective stochastic optimisation of the suspension system of road vehicles. J Sound Vib 298:1055–1072

    Article  ADS  Google Scholar 

  10. Gobbi M, Levi F, Mastinu G, Previati G (2014) On the analytical derivation of the pareto-optimal set with an application to structural design. Struct Multidiscip Optim 51(3):645–657

    Article  MathSciNet  Google Scholar 

  11. Gobbi M, Previati G, Ballo FM, Mastinu G (2017) Bending of beams of arbitrary cross sections—optimal design by analytical formulae. Struct Multidiscip Optim 55:827–838. doi:10.1007/s00158-016-1539-6

    Article  MathSciNet  Google Scholar 

  12. Kasperska RJ, Magnucki K, Ostwald M (2007) Bicriteria optimization of cold-formed thin-walled beams with monosymmetrical open cross sections under pure bending. Thin Walled Struct 45:563–572

    Article  Google Scholar 

  13. Kim D, Lee G, Lee B, Cho S (2001) Counterexample and optimality conditions in differentiable multiobjective programming. J Optim Theory Appl 109:187–192

    Article  MATH  MathSciNet  Google Scholar 

  14. Levi F, Gobbi M (2006) An application of analytical multi-objective optimization to truss structures. In: 11th AIAA/ISSMO multidisciplinary analysis and optimization conference

  15. Levi F, Gobbi M, Mastinu G (2005) An application of multi-objective stochastic optimisation to structural design. Struct Multidiscip Optim 29:272–284. doi:10.1007/s00158-004-0456-2

    Article  Google Scholar 

  16. Lütkepohl H (1996) Handbook of matrices. Wiley, New York

    MATH  Google Scholar 

  17. Mastinu G, Gobbi M, Miano C (2006) Optimal design of complex mechanical systems. Springer, Berlin

    MATH  Google Scholar 

  18. Miettinen K (1999) Nonlinear multiobjective optimization. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  19. Ostwald M, Rodak M (2013) Multicriteria optimization of cold-formed thin-walled beams with generalized open shape under different loads. Thin Walled Struct 65:26–33

    Article  Google Scholar 

  20. Papalambros P, Wilde D (2000) Principles of optimal design. Modeling and computation. Cambridge Universirty Press, Cambridge

    Book  MATH  Google Scholar 

  21. Pedersen P, Pedersen N (2009) Analytical optimal designs for long and short statically determinate beam structures. Struct Multidiscip Optim 39:343–357. doi:10.1007/s00158-008-0339-z

    Article  MATH  MathSciNet  Google Scholar 

  22. Rondal J, Würker K, Dutta D, Wardenier J, Yeomans N (1992) Structural stability of hollow sections. Verlag TUV Rheinland, Koln

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gobbi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

See Tables 1, 2 and 3

Table 1 Structural parameters—hollow squared beam
Table 2 Structural parameters—I-shaped beam
Table 3 Structural parameters—cantilever hollow rectangular cross section

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballo, F., Gobbi, M. & Previati, G. Optimal design of a beam subject to bending: a basic application. Meccanica 52, 3563–3576 (2017). https://doi.org/10.1007/s11012-017-0682-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-017-0682-5

Keywords

Navigation