Advertisement

Meccanica

, Volume 53, Issue 6, pp 1221–1237 | Cite as

Three-dimensional dynamic simulation of elastocapillarity

  • Jesus BuenoEmail author
  • Hugo Casquero
  • Yuri Bazilevs
  • Hector Gomez
Novel Computational Approaches to Old and New Problems in Mechanics

Abstract

At small scales, the interaction of multicomponent fluids and solids can be dominated by capillary forces giving rise to elastocapillarity. Surface tension may deform or even collapse slender structures and thus, cause important damage in microelectromechanical systems. However, under control, elastocapillarity could be used as a fabrication technique for the design of new materials and structures. Here, we propose a computational model for elastocapillarity that couples nonlinear hyperelastic solids with two-component immiscible fluids described by the Navier–Stokes–Cahn–Hilliard equations. As fluid–structure interaction computational technique, we employ a boundary-fitted approach. For the spatial discretization of the problem we adopt a NURBS-based isogeometric analysis methodology. A strongly-coupled algorithm is proposed for the solution of the problem. The potential of this model is illustrated by solving several numerical examples, including, capillary origami, the static wetting of soft substrates, the deformation of micropillars and the three dimensional wrapping of a liquid droplet.

Keywords

Elastocapillarity Fluid–structure interaction (FSI) Navier–Stokes–Cahn–Hilliard (NSCH) equations Isogeometric analysis (IGA) Arbitrary Lagrangian–Eulerian (ALE) description 

Notes

Acknowledgements

The authors would like to thank Robert Style for the experimental data used in Fig. 4.

Funding

HG and HC were partially supported by the European Research Council through the FP7 Ideas Starting Grant Program (Contract #307201). HG and JB were partially supported by Xunta de Galicia, co-financed with FEDER funds. YB was supported by AFOSR Grant No. FA9550-16-1-0131.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Aarts DGAL, Lekkerkerker HNW, Guo H, Wegdam GH, Bonn D (2005) Hydrodynamics of droplet coalescence. Phys Rev Lett 95:164503ADSCrossRefGoogle Scholar
  2. 2.
    Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199(58):229–263ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43(1):3–37MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249–252:28–41MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bazilevs Y, Takizawa K, Tezduyar TE, Hsu M-C, Kostov N, McIntyre S (2014) Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods. Arch Comput Methods Eng 21(4):359–398MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid–structure interaction. Methods and applications. Wiley, LondonCrossRefzbMATHGoogle Scholar
  7. 7.
    Bazilevs Y, Takizawa K, Tezduyar TE, Hsu M-C, Kostov N, McIntyre S (2014) Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods. Arch Comput Methods Eng 21(4):359–398MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Beirao da Veiga L, Buffa A, Sangalli G, Vazquez R (2013) Analysis suitable T-splines of arbitrary degree: definition, linear independence, and approximation properties. Math Models Methods Appl Sci 23(11):1979–2003MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bico J, Roman B, Moulin L, Boudaoud A (2004) Adhesion: elastocapillary coalescence in wet hair. Nature 432(7018):690–690ADSCrossRefGoogle Scholar
  10. 10.
    Bostwick JB, Daniels KE (2013) Capillary fracture of soft gels. Phys Rev E 88(4):042410ADSCrossRefGoogle Scholar
  11. 11.
    Brennen CE (2005) Fundamentals of multiphase flow. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  12. 12.
    Bueno J, Bazilevs Y, Juanes R, Gomez H (2017) Droplet motion driven by tensotaxis. Extrem Mech Lett 13:10–16CrossRefGoogle Scholar
  13. 13.
    Bueno J, Bona-Casas C, Bazilevs Y, Gomez H (2015) Interaction of complex fluids and solids: theory, algorithms and application to phase-change-driven implosion. Comput Mech 55(6):1105–1118MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Bueno J, Gomez H (2016) Liquid-vapor transformations with surfactants. Phase-field model and isogeometric analysis. J Comput Phys 321:797–818ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Casquero H, Bona-Casas C, Gomez H (2015) A NURBS-based immersed methodology for fluid-structure interaction. Comput Methods Appl Mech Eng 284:943–970ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Casquero H, Bona-Casas C, Gomez H (2017) NURBS-based numerical proxies for red blood cells and circulating tumor cells in microscale blood flow. Comput Methods Appl Mech Eng 316:646–667 (2017 Special Issue on Isogeometric Analysis: Progress and Challenges)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Casquero H, Lei L, Zhang J, Reali A, Gomez H (2016) Isogeometric collocation using analysis-suitable T-splines of arbitrary degree. Comput Methods Appl Mech Eng 301:164–186ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Casquero H, Lei L, Zhang Y, Reali A, Kiendl J, Gomez H (2017) Arbitrary-degree T-splines for isogeometric analysis of fully nonlinear Kirchhoff–Love shells. Comput Aided Design 82:140–153MathSciNetCrossRefGoogle Scholar
  19. 19.
    Casquero H, Liu L, Bona-Casas C, Zhang Y, Gomez H (2016) A hybrid variational-collocation immersed method for fluid–structure interaction using unstructured T-splines. Int J Numer Methods Eng 105(11):855–880MathSciNetCrossRefGoogle Scholar
  20. 20.
    Cerda E, Mahadevan L (2003) Geometry and physics of wrinkling. Phys Rev Lett 90(7):074302ADSCrossRefGoogle Scholar
  21. 21.
    Chakrapani N, Wei B, Carrillo A, Ajayan PM, Kane RS (2004) Capillarity-driven assembly of two-dimensional cellular carbon nanotube foams. Proc Natl Acad Sci 101(12):4009–4012ADSCrossRefGoogle Scholar
  22. 22.
    Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-\(\alpha\) method. J Appl Mech 60:371–375MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis toward integration of CAD and FEA. Wiley, LondonCrossRefzbMATHGoogle Scholar
  24. 24.
    de Gennes PG (1985) Wetting: statics and dynamics. Revi Mod Phys 57:827–863ADSCrossRefGoogle Scholar
  25. 25.
    DeVolder M, Hart AJ (2013) Engineering hierarchical nanostructures by elastocapillary self-assembly. Angew Chem Int Ed 52(9):2412–2425CrossRefGoogle Scholar
  26. 26.
    Donea J, Huerta A (2003) Finite element methods for flow problems. Wiley, LondonCrossRefGoogle Scholar
  27. 27.
    Donea J, Huerta A, Ponthot J-Ph, Rodrguez-Ferran A (2004) Encyclopedia of computational mechanics. Arbitrary Lagrangian–Eulerian methods, chapter 14, vol 1. Wiley, LondonGoogle Scholar
  28. 28.
    Duprat C, Bick AD, Warren PB, Stone HA (2013) Evaporation of drops on two parallel fibers: influence of the liquid morphology and fiber elasticity. Langmuir 29(25):7857–7863 PMID: 23705986CrossRefGoogle Scholar
  29. 29.
    Duprat C, Protiere S, Beebe AY, Stone HA (2012) Wetting of flexible fibre arrays. Nature 482(7386):510–513ADSCrossRefGoogle Scholar
  30. 30.
    Eggers J, Lister JR, Stone HA (1999) Coalescence of liquid drops. J Fluid Mech 401:293–310ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Gomez H, Calo VM, Bazilevs Y, Hughes TJR (2008) Isogeometric analysis of the Cahn–Hilliard phase-field model. Comput Methods Appl Mech Eng 197:43334352MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Gomez H, Hughes TJR (2011) Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models. J Comput Phys 230(13):5310–5327ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Gomez H, Reali A, Sangalli G (2014) Accurate, efficient, and (iso) geometrically flexible collocation methods for phase-field models. J Comput Phys 262:153–171ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Gomez H, van der Zee K (2016) Encyclopedia of computational mechanics. Computational phase-field modeling. Wiley, LondonGoogle Scholar
  35. 35.
    Hsu M-C, Akkerman I, Bazilevs Y (2014) Finite element simulation of wind turbine aerodynamics: validation study using nrel phase vi experiment. Wind Energy 17(3):461–481ADSCrossRefGoogle Scholar
  36. 36.
    Huang J, Juszkiewicz M, de Jeu WH, Cerda E, Emrick T, Menon N, Russell TP (2007) Capillary wrinkling of floating thin polymer films. Science 317(5838):650–653ADSCrossRefGoogle Scholar
  37. 37.
    Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29(3):329–349ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-\(\alpha\) method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190(34):305–319ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Jeong JH, Goldenfeld N, Dantzig JA (2001) Phase field model for three-dimensional dendritic growth with fluid flow. Phys Rev E 64:041602ADSCrossRefGoogle Scholar
  41. 41.
    Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119:73–94ADSCrossRefzbMATHGoogle Scholar
  42. 42.
    Kamensky D, Hsu MC, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR (2015) An immersogeometric variational framework for fluid–structure interaction. Comput Methods Appl Mech Eng 284:1005–1053ADSCrossRefGoogle Scholar
  43. 43.
    Kamensky D, Hsu M-C, Yu Y, Evans JA, Sacks MS, Hughes TJR (2017) Immersogeometric cardiovascular fluid–structure interaction analysis with divergence-conforming b-splines. Comput Methods Appl Mech Eng 314:408–472ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    King RJ (1982) Pulmonary surfactant. J Appl Physiol 53(1):1–8CrossRefGoogle Scholar
  45. 45.
    Liu J, Landis CM, Gomez H, Hughes TJR (2015) Liquid-vapor phase transition: thermomechanical theory, entropy stable numerical formulation, and boiling simulations. Comput Methods Appl Mech Eng 297:476–553ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Lorenzo G, Scott MA, Tew K, Hughes TJR, Zhang YJ, Liu L, Vilanova G, Gomez H (2016) Tissue-scale, personalized modeling and simulation of prostate cancer growth. Proc Natl Acad Sci 113(48):E7663–E7671Google Scholar
  47. 47.
    Moure A, Gomez H (2016) Computational model for amoeboid motion: coupling membrane and cytosol dynamics. Phys Rev E 94(4):042423ADSCrossRefGoogle Scholar
  48. 48.
    Prosperetti A, Tryggvason G (2009) Comput methods for multiphase flow. Cambridge University Press, CambridgezbMATHGoogle Scholar
  49. 49.
    Py C, Reverdy P, Doppler L, Bico J, Roman B, Baroud CN (2007) Capillary origami: spontaneous wrapping of a droplet with an elastic sheet. Phys Rev Lett 98:156103ADSCrossRefzbMATHGoogle Scholar
  50. 50.
    Raccurt O, Tardif F, d’Avitaya FA, Vareine T (2004) Influence of liquid surface tension on stiction of SOI MEMS. J Micromech Microeng 14(7):1083CrossRefGoogle Scholar
  51. 51.
    Roman B, Bico J (2010) Elasto-capillarity: deforming an elastic structure with a liquid droplet. J Phys Condens Matter 22(49):493101CrossRefGoogle Scholar
  52. 52.
    Shao D, Levine H, Rappel W-J (2012) Coupling actin flow, adhesion, and morphology in a computational cell motility model. Proc Natl Acad Sci 109(18):6851–6856ADSCrossRefGoogle Scholar
  53. 53.
    Sigrist J-F (2015) Fluid–structure interaction. Wiley, LondonCrossRefzbMATHGoogle Scholar
  54. 54.
    Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New YoirkzbMATHGoogle Scholar
  55. 55.
    Stein K, Benney R, Kalro V, Tezduyar TE, Leonard J, Accorsi M (2000) Parachute fluid-structure interactions: 3-D computation. Comput Methods Appl Mech Eng 190(3):373–386ADSCrossRefzbMATHGoogle Scholar
  56. 56.
    Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid–structure interactions with large displacements. J Appl Mech 70:58–63CrossRefzbMATHGoogle Scholar
  57. 57.
    Style RW, Boltyanskiy R, Che Y, Wettlaufer JS, Wilen LA, Dufresne ER (2013) Universal deformation of soft substrates near a contact line and the direct measurement of solid surface stresses. Phys Rev Lett 110:066103ADSCrossRefGoogle Scholar
  58. 58.
    Style RW, Jagota A, Hui C-Y, Dufresne ER (2016) Elastocapillarity: surface tension and the mechanics of soft solids. arXiv preprint arXiv:1604.02052
  59. 59.
    Takizawa K (2014) Computational engineering analysis with the new-generation space-time methods. Comput Mech 54:193–211MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space-time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling. Arch Comput Methods Eng 19(2):171–225MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Takizawa K, Bazilevs Y, Tezduyar TE, Long CC, Marsden AL, Schjodt K (2014) ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. Math Models Methods Appl Sci 24:2437–2486MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Takizawa K, Tezduyar TE, Terahara T, Sasaki T (2016) Heart valve flow computation with the integrated space–time VMS, slip interface, topology change and isogeometric discretization methods. Comput Fluids. doi: 10.1016/j.compfluid.2016.11.012
  63. 63.
    Tanaka T, Morigami M, Atoda N (1993) Mechanism of resist pattern collapse during development process. Jpn J Appl Phys 32(12S):6059ADSCrossRefGoogle Scholar
  64. 64.
    Taroni M, Vella D (2012) Multiple equilibria in a simple elastocapillary system. J Fluid Mech 712:273–294ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Tawfick SH, Bico J, Barcelo S (2016) Three-dimensional lithography by elasto-capillary engineering of filamentary materials. MRS Bull 41(02):108–114CrossRefGoogle Scholar
  66. 66.
    Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8:83–130CrossRefzbMATHGoogle Scholar
  67. 67.
    Tezduyar TE, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26(10):27–36CrossRefzbMATHGoogle Scholar
  68. 68.
    Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54:855–900CrossRefzbMATHGoogle Scholar
  69. 69.
    Travasso RDM, Poiré EC, Castro M, Rodrguez-Manzaneque JC, Hernández-Machado A (2011) Tumor angiogenesis and vascular patterning: a mathematical model. PloS ONE 6(5):e19989ADSCrossRefGoogle Scholar
  70. 70.
    Vahidkhah K, Balogh P, Bagchi P (2016) Flow of red blood cells in stenosed microvessels. Sci Rep 6:28194. doi: 10.1038/srep28194
  71. 71.
    Vilanova G, Colominas I, Gomez H (2017) A mathematical model of tumour angiogenesis: growth, regression and regrowth. J R Soc Interface 14(126):20160918CrossRefGoogle Scholar
  72. 72.
    Wei X, Zhang YJ, Hughes TJR, Scott MA (2015) Truncated hierarchical Catmull–Clark subdivision with local refinement. Comput Methods Appl Mech Eng 291:1–20ADSMathSciNetCrossRefGoogle Scholar
  73. 73.
    Wei X, Zhang YJ, Hughes TJR, Scott MA (2016) Extended truncated hierarchical Catmull–Clark subdivision. Comput Methods Appl Mech Eng 299:316–336ADSMathSciNetCrossRefGoogle Scholar
  74. 74.
    Xu J, Vilanova G, Gomez H (2017) Full-scale, three-dimensional simulation of early-stage tumor growth: the onset of malignancy. Comput Methods Appl Mech Eng 314:126–146ADSMathSciNetCrossRefGoogle Scholar
  75. 75.
    Zhang L, Gerstenberger A, Wang X, Liu WK (2004) Immersed finite element method. Comput Methods Appl Mech Eng 193(21):2051–2067ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Jesus Bueno
    • 1
    Email author
  • Hugo Casquero
    • 1
  • Yuri Bazilevs
    • 2
  • Hector Gomez
    • 3
  1. 1.Departamento de Métodos Matemáticos e de RepresentaciónUniversidade da CoruñaA CoruñaSpain
  2. 2.Department of Structural EngineeringUniversity of California, San DiegoLa JollaUSA
  3. 3.School of Mechanical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations