Skip to main content
Log in

Three-dimensional dynamic simulation of elastocapillarity

  • Novel Computational Approaches to Old and New Problems in Mechanics
  • Published:
Meccanica Aims and scope Submit manuscript

An Erratum to this article was published on 03 July 2017

This article has been updated

Abstract

At small scales, the interaction of multicomponent fluids and solids can be dominated by capillary forces giving rise to elastocapillarity. Surface tension may deform or even collapse slender structures and thus, cause important damage in microelectromechanical systems. However, under control, elastocapillarity could be used as a fabrication technique for the design of new materials and structures. Here, we propose a computational model for elastocapillarity that couples nonlinear hyperelastic solids with two-component immiscible fluids described by the Navier–Stokes–Cahn–Hilliard equations. As fluid–structure interaction computational technique, we employ a boundary-fitted approach. For the spatial discretization of the problem we adopt a NURBS-based isogeometric analysis methodology. A strongly-coupled algorithm is proposed for the solution of the problem. The potential of this model is illustrated by solving several numerical examples, including, capillary origami, the static wetting of soft substrates, the deformation of micropillars and the three dimensional wrapping of a liquid droplet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 03 July 2017

    An erratum to this article has been published.

References

  1. Aarts DGAL, Lekkerkerker HNW, Guo H, Wegdam GH, Bonn D (2005) Hydrodynamics of droplet coalescence. Phys Rev Lett 95:164503

    Article  ADS  Google Scholar 

  2. Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199(58):229–263

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43(1):3–37

    Article  MathSciNet  MATH  Google Scholar 

  4. Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249–252:28–41

    Article  MathSciNet  MATH  Google Scholar 

  5. Bazilevs Y, Takizawa K, Tezduyar TE, Hsu M-C, Kostov N, McIntyre S (2014) Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods. Arch Comput Methods Eng 21(4):359–398

    Article  MathSciNet  MATH  Google Scholar 

  6. Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid–structure interaction. Methods and applications. Wiley, London

    Book  MATH  Google Scholar 

  7. Bazilevs Y, Takizawa K, Tezduyar TE, Hsu M-C, Kostov N, McIntyre S (2014) Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods. Arch Comput Methods Eng 21(4):359–398

    Article  MathSciNet  MATH  Google Scholar 

  8. Beirao da Veiga L, Buffa A, Sangalli G, Vazquez R (2013) Analysis suitable T-splines of arbitrary degree: definition, linear independence, and approximation properties. Math Models Methods Appl Sci 23(11):1979–2003

    Article  MathSciNet  MATH  Google Scholar 

  9. Bico J, Roman B, Moulin L, Boudaoud A (2004) Adhesion: elastocapillary coalescence in wet hair. Nature 432(7018):690–690

    Article  ADS  Google Scholar 

  10. Bostwick JB, Daniels KE (2013) Capillary fracture of soft gels. Phys Rev E 88(4):042410

    Article  ADS  Google Scholar 

  11. Brennen CE (2005) Fundamentals of multiphase flow. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  12. Bueno J, Bazilevs Y, Juanes R, Gomez H (2017) Droplet motion driven by tensotaxis. Extrem Mech Lett 13:10–16

    Article  Google Scholar 

  13. Bueno J, Bona-Casas C, Bazilevs Y, Gomez H (2015) Interaction of complex fluids and solids: theory, algorithms and application to phase-change-driven implosion. Comput Mech 55(6):1105–1118

    Article  MathSciNet  MATH  Google Scholar 

  14. Bueno J, Gomez H (2016) Liquid-vapor transformations with surfactants. Phase-field model and isogeometric analysis. J Comput Phys 321:797–818

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Casquero H, Bona-Casas C, Gomez H (2015) A NURBS-based immersed methodology for fluid-structure interaction. Comput Methods Appl Mech Eng 284:943–970

    Article  ADS  MathSciNet  Google Scholar 

  16. Casquero H, Bona-Casas C, Gomez H (2017) NURBS-based numerical proxies for red blood cells and circulating tumor cells in microscale blood flow. Comput Methods Appl Mech Eng 316:646–667 (2017 Special Issue on Isogeometric Analysis: Progress and Challenges)

    Article  ADS  MathSciNet  Google Scholar 

  17. Casquero H, Lei L, Zhang J, Reali A, Gomez H (2016) Isogeometric collocation using analysis-suitable T-splines of arbitrary degree. Comput Methods Appl Mech Eng 301:164–186

    Article  ADS  MathSciNet  Google Scholar 

  18. Casquero H, Lei L, Zhang Y, Reali A, Kiendl J, Gomez H (2017) Arbitrary-degree T-splines for isogeometric analysis of fully nonlinear Kirchhoff–Love shells. Comput Aided Design 82:140–153

    Article  MathSciNet  Google Scholar 

  19. Casquero H, Liu L, Bona-Casas C, Zhang Y, Gomez H (2016) A hybrid variational-collocation immersed method for fluid–structure interaction using unstructured T-splines. Int J Numer Methods Eng 105(11):855–880

    Article  MathSciNet  Google Scholar 

  20. Cerda E, Mahadevan L (2003) Geometry and physics of wrinkling. Phys Rev Lett 90(7):074302

    Article  ADS  Google Scholar 

  21. Chakrapani N, Wei B, Carrillo A, Ajayan PM, Kane RS (2004) Capillarity-driven assembly of two-dimensional cellular carbon nanotube foams. Proc Natl Acad Sci 101(12):4009–4012

    Article  ADS  Google Scholar 

  22. Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-\(\alpha\) method. J Appl Mech 60:371–375

    Article  MathSciNet  MATH  Google Scholar 

  23. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis toward integration of CAD and FEA. Wiley, London

    Book  MATH  Google Scholar 

  24. de Gennes PG (1985) Wetting: statics and dynamics. Revi Mod Phys 57:827–863

    Article  ADS  Google Scholar 

  25. DeVolder M, Hart AJ (2013) Engineering hierarchical nanostructures by elastocapillary self-assembly. Angew Chem Int Ed 52(9):2412–2425

    Article  Google Scholar 

  26. Donea J, Huerta A (2003) Finite element methods for flow problems. Wiley, London

    Book  Google Scholar 

  27. Donea J, Huerta A, Ponthot J-Ph, Rodrguez-Ferran A (2004) Encyclopedia of computational mechanics. Arbitrary Lagrangian–Eulerian methods, chapter 14, vol 1. Wiley, London

    Google Scholar 

  28. Duprat C, Bick AD, Warren PB, Stone HA (2013) Evaporation of drops on two parallel fibers: influence of the liquid morphology and fiber elasticity. Langmuir 29(25):7857–7863 PMID: 23705986

    Article  Google Scholar 

  29. Duprat C, Protiere S, Beebe AY, Stone HA (2012) Wetting of flexible fibre arrays. Nature 482(7386):510–513

    Article  ADS  Google Scholar 

  30. Eggers J, Lister JR, Stone HA (1999) Coalescence of liquid drops. J Fluid Mech 401:293–310

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Gomez H, Calo VM, Bazilevs Y, Hughes TJR (2008) Isogeometric analysis of the Cahn–Hilliard phase-field model. Comput Methods Appl Mech Eng 197:43334352

    Article  MathSciNet  MATH  Google Scholar 

  32. Gomez H, Hughes TJR (2011) Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models. J Comput Phys 230(13):5310–5327

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Gomez H, Reali A, Sangalli G (2014) Accurate, efficient, and (iso) geometrically flexible collocation methods for phase-field models. J Comput Phys 262:153–171

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Gomez H, van der Zee K (2016) Encyclopedia of computational mechanics. Computational phase-field modeling. Wiley, London

    Google Scholar 

  35. Hsu M-C, Akkerman I, Bazilevs Y (2014) Finite element simulation of wind turbine aerodynamics: validation study using nrel phase vi experiment. Wind Energy 17(3):461–481

    Article  ADS  Google Scholar 

  36. Huang J, Juszkiewicz M, de Jeu WH, Cerda E, Emrick T, Menon N, Russell TP (2007) Capillary wrinkling of floating thin polymer films. Science 317(5838):650–653

    Article  ADS  Google Scholar 

  37. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29(3):329–349

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-\(\alpha\) method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190(34):305–319

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Jeong JH, Goldenfeld N, Dantzig JA (2001) Phase field model for three-dimensional dendritic growth with fluid flow. Phys Rev E 64:041602

    Article  ADS  Google Scholar 

  41. Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119:73–94

    Article  ADS  MATH  Google Scholar 

  42. Kamensky D, Hsu MC, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR (2015) An immersogeometric variational framework for fluid–structure interaction. Comput Methods Appl Mech Eng 284:1005–1053

    Article  ADS  Google Scholar 

  43. Kamensky D, Hsu M-C, Yu Y, Evans JA, Sacks MS, Hughes TJR (2017) Immersogeometric cardiovascular fluid–structure interaction analysis with divergence-conforming b-splines. Comput Methods Appl Mech Eng 314:408–472

    Article  ADS  MathSciNet  Google Scholar 

  44. King RJ (1982) Pulmonary surfactant. J Appl Physiol 53(1):1–8

    Article  Google Scholar 

  45. Liu J, Landis CM, Gomez H, Hughes TJR (2015) Liquid-vapor phase transition: thermomechanical theory, entropy stable numerical formulation, and boiling simulations. Comput Methods Appl Mech Eng 297:476–553

    Article  ADS  MathSciNet  Google Scholar 

  46. Lorenzo G, Scott MA, Tew K, Hughes TJR, Zhang YJ, Liu L, Vilanova G, Gomez H (2016) Tissue-scale, personalized modeling and simulation of prostate cancer growth. Proc Natl Acad Sci 113(48):E7663–E7671

  47. Moure A, Gomez H (2016) Computational model for amoeboid motion: coupling membrane and cytosol dynamics. Phys Rev E 94(4):042423

    Article  ADS  Google Scholar 

  48. Prosperetti A, Tryggvason G (2009) Comput methods for multiphase flow. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  49. Py C, Reverdy P, Doppler L, Bico J, Roman B, Baroud CN (2007) Capillary origami: spontaneous wrapping of a droplet with an elastic sheet. Phys Rev Lett 98:156103

    Article  ADS  MATH  Google Scholar 

  50. Raccurt O, Tardif F, d’Avitaya FA, Vareine T (2004) Influence of liquid surface tension on stiction of SOI MEMS. J Micromech Microeng 14(7):1083

    Article  Google Scholar 

  51. Roman B, Bico J (2010) Elasto-capillarity: deforming an elastic structure with a liquid droplet. J Phys Condens Matter 22(49):493101

    Article  Google Scholar 

  52. Shao D, Levine H, Rappel W-J (2012) Coupling actin flow, adhesion, and morphology in a computational cell motility model. Proc Natl Acad Sci 109(18):6851–6856

    Article  ADS  Google Scholar 

  53. Sigrist J-F (2015) Fluid–structure interaction. Wiley, London

    Book  MATH  Google Scholar 

  54. Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New Yoirk

    MATH  Google Scholar 

  55. Stein K, Benney R, Kalro V, Tezduyar TE, Leonard J, Accorsi M (2000) Parachute fluid-structure interactions: 3-D computation. Comput Methods Appl Mech Eng 190(3):373–386

    Article  ADS  MATH  Google Scholar 

  56. Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid–structure interactions with large displacements. J Appl Mech 70:58–63

    Article  MATH  Google Scholar 

  57. Style RW, Boltyanskiy R, Che Y, Wettlaufer JS, Wilen LA, Dufresne ER (2013) Universal deformation of soft substrates near a contact line and the direct measurement of solid surface stresses. Phys Rev Lett 110:066103

    Article  ADS  Google Scholar 

  58. Style RW, Jagota A, Hui C-Y, Dufresne ER (2016) Elastocapillarity: surface tension and the mechanics of soft solids. arXiv preprint arXiv:1604.02052

  59. Takizawa K (2014) Computational engineering analysis with the new-generation space-time methods. Comput Mech 54:193–211

    Article  MathSciNet  MATH  Google Scholar 

  60. Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space-time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling. Arch Comput Methods Eng 19(2):171–225

    Article  MathSciNet  MATH  Google Scholar 

  61. Takizawa K, Bazilevs Y, Tezduyar TE, Long CC, Marsden AL, Schjodt K (2014) ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. Math Models Methods Appl Sci 24:2437–2486

    Article  MathSciNet  MATH  Google Scholar 

  62. Takizawa K, Tezduyar TE, Terahara T, Sasaki T (2016) Heart valve flow computation with the integrated space–time VMS, slip interface, topology change and isogeometric discretization methods. Comput Fluids. doi:10.1016/j.compfluid.2016.11.012

  63. Tanaka T, Morigami M, Atoda N (1993) Mechanism of resist pattern collapse during development process. Jpn J Appl Phys 32(12S):6059

    Article  ADS  Google Scholar 

  64. Taroni M, Vella D (2012) Multiple equilibria in a simple elastocapillary system. J Fluid Mech 712:273–294

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Tawfick SH, Bico J, Barcelo S (2016) Three-dimensional lithography by elasto-capillary engineering of filamentary materials. MRS Bull 41(02):108–114

    Article  Google Scholar 

  66. Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8:83–130

    Article  MATH  Google Scholar 

  67. Tezduyar TE, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26(10):27–36

    Article  MATH  Google Scholar 

  68. Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54:855–900

    Article  MATH  Google Scholar 

  69. Travasso RDM, Poiré EC, Castro M, Rodrguez-Manzaneque JC, Hernández-Machado A (2011) Tumor angiogenesis and vascular patterning: a mathematical model. PloS ONE 6(5):e19989

    Article  ADS  Google Scholar 

  70. Vahidkhah K, Balogh P, Bagchi P (2016) Flow of red blood cells in stenosed microvessels. Sci Rep 6:28194. doi:10.1038/srep28194

  71. Vilanova G, Colominas I, Gomez H (2017) A mathematical model of tumour angiogenesis: growth, regression and regrowth. J R Soc Interface 14(126):20160918

    Article  Google Scholar 

  72. Wei X, Zhang YJ, Hughes TJR, Scott MA (2015) Truncated hierarchical Catmull–Clark subdivision with local refinement. Comput Methods Appl Mech Eng 291:1–20

    Article  ADS  MathSciNet  Google Scholar 

  73. Wei X, Zhang YJ, Hughes TJR, Scott MA (2016) Extended truncated hierarchical Catmull–Clark subdivision. Comput Methods Appl Mech Eng 299:316–336

    Article  ADS  MathSciNet  Google Scholar 

  74. Xu J, Vilanova G, Gomez H (2017) Full-scale, three-dimensional simulation of early-stage tumor growth: the onset of malignancy. Comput Methods Appl Mech Eng 314:126–146

    Article  ADS  MathSciNet  Google Scholar 

  75. Zhang L, Gerstenberger A, Wang X, Liu WK (2004) Immersed finite element method. Comput Methods Appl Mech Eng 193(21):2051–2067

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Robert Style for the experimental data used in Fig. 4.

Funding

HG and HC were partially supported by the European Research Council through the FP7 Ideas Starting Grant Program (Contract #307201). HG and JB were partially supported by Xunta de Galicia, co-financed with FEDER funds. YB was supported by AFOSR Grant No. FA9550-16-1-0131.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesus Bueno.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

The original version of this article was revised because due to an unfortunate turn of events during processing of this article essential data was omitted from figure 5. Figure 5 has been updated with the correct version that should be regarded as the final version by the reader.

An erratum to this article is available at https://doi.org/10.1007/s11012-017-0699-9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bueno, J., Casquero, H., Bazilevs, Y. et al. Three-dimensional dynamic simulation of elastocapillarity. Meccanica 53, 1221–1237 (2018). https://doi.org/10.1007/s11012-017-0667-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-017-0667-4

Keywords

Navigation