, Volume 53, Issue 7, pp 1673–1697 | Cite as

Meshless meso-modeling of masonry in the computational homogenization framework

  • Giuseppe Giambanco
  • Emma La Malfa Ribolla
  • Antonino Spada
New Trends in Mechanics of Masonry


In the present study a multi-scale computational strategy for the analysis of structures made-up of masonry material is presented. The structural macroscopic behavior is obtained making use of the Computational Homogenization (CH) technique based on the solution of the Boundary Value Problem (BVP) of a detailed Unit Cell (UC) chosen at the mesoscale and representative of the heterogeneous material. The attention is focused on those materials that can be regarded as an assembly of units interfaced by adhesive/cohesive joints. Therefore, the smallest UC is composed by the aggregate and the surrounding joints, the former assumed to behave elastically while the latter show an elastoplastic softening response. The governing equations at the macroscopic level are formulated in the framework of Finite Element Method (FEM) while the Meshless Method (MM) is adopted to solve the BVP at the mesoscopic level. The material tangent stiffness matrix is evaluated at both the mesoscale and macroscale levels for any quadrature point. Macroscopic localization of plastic bands is obtained performing a spectral analysis of the tangent stiffness matrix. Localized plastic bands are embedded into the quadrature points area of the macroscopic finite elements. In order to validate the proposed CH strategy, numerical examples relative to running bond masonry specimens are developed.


Multi-scale Meso-modeling Meshless Masonry 


  1. 1.
    Addessi D, Sacco E (2012) A multi-scale enriched model for the analysis of masonry panels. Int J Solids Struct 49(6):865–880CrossRefGoogle Scholar
  2. 2.
    Addessi D, Sacco E, Paolone A (2010) Cosserat model for periodic masonry deduced by nonlinear homogenization. Eur J Mech-A/Solids 29(4):724–737CrossRefGoogle Scholar
  3. 3.
    Alfano G, Crisfield MA (2001) Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int J Numer Methods Eng 50(7):1701–1736CrossRefMATHGoogle Scholar
  4. 4.
    Anthoine A (1995) Derivation of the in-plane elastic characteristics of masonry through homogenization theory. Int J Solids Struct 32(2):137–163CrossRefMATHGoogle Scholar
  5. 5.
    Atluri SN, Shen S (2002) The meshless method. Tech Sci Press, ForsythMATHGoogle Scholar
  6. 6.
    Borré G, Maier G (1989) On linear versus nonlinear flow rules in strain localization analysis. Meccanica 24(1):36–41MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bosco E, Kouznetsova VG, Geers MGD (2015) Multi-scale computational homogenization–localization for propagating discontinuities using x-fem. Int J Numer Methods Eng 102(3–4):496–527MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Christman TA, Needleman A, Süresh S (1989) An experimental and numerical study of deformation in metal-ceramic composites. Acta Metall 37(11):3029–3050CrossRefGoogle Scholar
  9. 9.
    Coenen EWC, Kouznetsova VG, Bosco E, Geers MGD (2012) A multi-scale approach to bridge microscale damage and macroscale failure: a nested computational homogenization-localization framework. Int J Fract 178(1–2):157–178CrossRefGoogle Scholar
  10. 10.
    Corigliano A, Allix O (2000) Some aspects of interlaminar degradation in composites. Comput Methods Appl Mech Eng 185(2):203–224ADSCrossRefMATHGoogle Scholar
  11. 11.
    Dhanasekar M, Page AW, Kleeman PW (1985) The failure of brick masonry under biaxial stresses. Proc Inst Civil Eng 79(2):295–313Google Scholar
  12. 12.
    Feyel F, Chaboche JL (2000) \(\text{ Fe }^2\) multiscale approach for modelling the elastoviscoplastic behaviour of long fibre sic/ti composite materials. Comput Methods Appl Mech Eng 183(3):309–330ADSCrossRefMATHGoogle Scholar
  13. 13.
    Fileccia Scimemi G, Giambanco G, Spada A (2014) The interphase model applied to the analysis of masonry structures. Comput Methods Appl Mech Eng 279:66–85ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Fuschi P, Giambanco G, Rizzo S (1995) Nonlinear finite element analysis of no-tension masonry structures. Meccanica 30(3):233–249CrossRefMATHGoogle Scholar
  15. 15.
    Geers MGD, Kouznetsova VG, Brekelmans WAM (2010) Multi-scale computational homogenization: trends and challenges. J Comput Appl Math 234(7):2175–2182CrossRefMATHGoogle Scholar
  16. 16.
    Giambanco G, Di Gati L (1997) A cohesive interface model for the structural mechanics of block masonry. Mech Res Commun 24(5):503–512MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Giambanco G, Fileccia Scimemi G (2006) Mixed mode failure analysis of bonded joints with rate-dependent interface models. Int J Numer Methods Eng 67(8):1160–1192CrossRefMATHGoogle Scholar
  18. 18.
    Giambanco G, Rizzo S, Spallino R (2001) Numerical analysis of masonry structures via interface models. Comput Methods Appl Mech Eng 190(49):6493–6511ADSCrossRefMATHGoogle Scholar
  19. 19.
    Giambanco G, Fileccia Scimemi G, Spada A (2012) The interphase finite element. Comput Mech 50(3):353–366MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Giambanco G, La Malfa Ribolla E, Spada A (2014) CH of masonry materials via meshless meso-modeling. Frattura ed Integrita Strutturale 29:150Google Scholar
  21. 21.
    Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13(4):213–222ADSCrossRefGoogle Scholar
  22. 22.
    Jain JR, Ghosh S (2008) Damage evolution in composites with a homogenization-based continuum damage mechanics model. Int J Damage Mech 18(6):533–568CrossRefGoogle Scholar
  23. 23.
    Kaczmarczyk Ł, Pearce CJ, Bićanić N, de Souza Neto E (2010) Numerical multiscale solution strategy for fracturing heterogeneous materials. Comput Methods Appl Mech Eng 199(17):1100–1113ADSMathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40(13):3647–3679CrossRefMATHGoogle Scholar
  25. 25.
    Koiter WT (1953) Stress-strain relations, uniqueness and variational theorems for elastic-plastic materials with a singular yield surface. Quart Appl Math 11(3):350–354MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Kouznetsova VG, Geers MGD, Brekelmans WAM (2002) Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int J Numer Methods Eng 54(8):1235–1260CrossRefMATHGoogle Scholar
  27. 27.
    Lourenço PB, Rots JG (1997) Multisurface interface model for analysis of masonry structures. J Eng Mech 123(7):660–668CrossRefGoogle Scholar
  28. 28.
    Mandel J (1972) Plasticité Classique et Viscoplasticité, vol CISM Courses and Lectures No 97. Springer-Verlag, BerlinGoogle Scholar
  29. 29.
    Massart TJ (2003) Multi-scale modeling of damage in masonry structures. Ph.D. thesis, Université libre de BruxellesGoogle Scholar
  30. 30.
    Massart TJ, Peerlings RHJ, Geers MGD (2007) An enhanced multi-scale approach for masonry wall computations with localization of damage. Int J Numer Methods Eng 69(5):1022–1059CrossRefMATHGoogle Scholar
  31. 31.
    Nemat-Nasser S, Hori M (1999) Micromechanics: overall properties of heterogeneous solids. Elsevier, AmsterdamMATHGoogle Scholar
  32. 32.
    Nguyen GD, Nguyen CT, Nguyen VP, Bui HH, Shen L (2016) A size-dependent constitutive modelling framework for localised failure analysis. Comput Mech 1–24Google Scholar
  33. 33.
    Nguyen VP, Rabczuk T, Bordas S, Duflot M (2008) Meshless methods: a review and computer implementation aspects. Math Comput Simul 79(3):763–813MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Nguyen VP, Stroeven M, Sluys LJ (2011) Multiscale continuous and discontinuous modeling of heterogeneous materials: a review on recent developments. J Multiscale Model 3(04):229–270MathSciNetCrossRefGoogle Scholar
  35. 35.
    Ottosen NS, Runesson K (1991) Properties of discontinuous bifurcation solutions in elasto-plasticity. Int J Solids Struct 27(4):401–421CrossRefMATHGoogle Scholar
  36. 36.
    Pietruszczak S, Niu X (1992) A mathematical description of macroscopic behaviour of brick masonry. Int J Solids Struct 29(5):531–546CrossRefMATHGoogle Scholar
  37. 37.
    Raijmakers TMJ, Vermeltfoort AT (1992) Deformation controlled tests in masonry shear walls: report B-92-1156. TNO-Bouw, DelftGoogle Scholar
  38. 38.
    Rudnicki JW, Rice JR (1975) Conditions for the localization of deformation in pressure-sensitive dilatant materials. J Mech Phys Solids 23(6):371–394ADSCrossRefGoogle Scholar
  39. 39.
    Sacco E, Lebon F (2012) A damage-friction interface model derived from micromechanical approach. Int J Solids Structures 49(26):3666–3680CrossRefGoogle Scholar
  40. 40.
    Smit RJM, Brekelmans WAM, Meijer HEH (1998) Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Comput Methods Appl Mech Eng 155(1):181–192ADSCrossRefMATHGoogle Scholar
  41. 41.
    Spada A, Giambanco G, Rizzo P (2009) Damage and plasticity at the interfaces in composite materials and structures. Comput Methods Appl Mech Eng 198(49):3884–3901ADSMathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Spada A, Giambanco G, Rizzo P (2011) Elastoplastic damaging model for adhesive anchor systems. i: theoretical formulation and numerical implementation. J Eng Mech 137(12):854–861CrossRefGoogle Scholar
  43. 43.
    Spada A, Giambanco G, La Malfa Ribolla E (2015) A FE-Meshless multiscale approach for masonry materials. Proced Eng 109:364–371CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Università degli Studi di PalermoPalermoItaly

Personalised recommendations