, Volume 52, Issue 9, pp 2023–2034 | Cite as

Twilight of the EUSAMA diagnostic methodology

  • Milan KlapkaEmail author
  • Ivan Mazůrek
  • Ondřej Macháček
  • Michal Kubík


The article deals with recent failures of the EUSAMA methodology which is used for non-destructive testing of the car chassis without disassembling. Using simulated data, we perform an analysis of false-negative evaluation of car condition which occurs often on cars, which are actually in good technical shape. Suggested analysis is able to evaluate the changes introduced to the testing methodology directly on this particular group of chassis designs. The excitation stroke is identified as one of the main causes of methodology failure. The authors suggest that the stroke does not match the roughness profile of current roads. The authors propose certain adjustments of the EUSAMA methodology which should eliminate growing set of tests with contradictory diagnosis result. Suggested adjustments are tested by simulation as well. These adjustments involve changes either in software or hardware section of methodology. Significantly, the proposed adjustments can be easily applied to most EUSAMA testers already produced. However, it is assumed that the suggested methodology changes will be so significant, that new methodology cannot be labeled as EUSAMA anymore.


Car suspension Diagnostics EUSAMA methodology Shock absorber Simulation 

List of symbols


Auxiliary criterion for estimation of damping ratio


Viscous damping (Ns/mm)


Dynamic force acting on the oscillating platform (N)


Maximum dynamic force acting on the oscillating platform (N)


Minimum force acting on the oscillating platform (N)


Static force acting on the standstill platform (N)


Natural frequency of sprung mass (Hz)


Gravitational acceleration (\(\hbox {m}/\hbox {s}^{2}\))


Instantaneous excitation stroke (mm)


Amplitude of excitation stroke (mm)


Imaginary unit


Linearized tyre stiffness (N/mm)


Linearized suspension stiffness (N/mm)


Unsprung mass (kg)


Sprung mass (kg)


Exponent of line negative slope


Ratio of sprung and unsprung masses


Power spectral density of road roughness (\(\hbox {cm}^{2}\))


Static deformation of tire (mm)


Transfer function between tire and platform


Displacement of unsprung mass in z axis (mm)


Displacement of sprung mass in z axis (mm)

\(\xi _{1}\)

Damping ratio of unsprung mass

\(\xi _{2}\)

Damping ratio of sprung mass

\(\xi _{\mathrm{lim}}\)

designed minimum damping ratio


Phase shift between instantaneous stroke and acting downforce (rad)


Spatial frequency of road roughness (\(\hbox {m}^{3}/\hbox {cycle}\))

\(\varOmega _{0}\)

Reference spatial frequency of road roughness (\(\hbox {m}^{3}/\hbox {cycle}\))


Angular frequency of excitation signal; radian spatial frequency (rad/s; rad/m)



The research leading to these results has received funding from the MEYS under the National Sustainability Programme I (Project LO1202) and project FSI-S-14-2329.


  1. 1.
    Calvo JA, Díaz V, San Román JL (2008) Influence of shock absorber wearing on vehicle brake performance. Int J Automot Technol 9(4):235–240. doi: 10.1007/s12239-008-0056-z CrossRefGoogle Scholar
  2. 2.
    Koylu H, Cinar A (2013) Dynamical investigation of effects of variable damper settings induced brake pressure oscillations on axle and wheel oscillations during ABS-braking based on experimental study. Meccanica 48(5):1093–1115. doi: 10.1007/s11012-012-9654-y. ISSN 0025-6455. Available at
  3. 3.
    EUSAMA - Recommendations for a performance test specification of an “on car“ vehicle suspension testing system TS-02-76 (1976)Google Scholar
  4. 4.
    MAHA MSD 3000 Achsdämpfungsprüfstand für PKW und Transporter bis 2500 kg Achslast (Bodengruppe). Available at
  5. 5.
    Knestel A, Küchle J (2004) Verfahren und Vorrichtung zum Bestimmen eines Dämpfungsmasses für Schwingungen von Fahrzeugen, MAHA, europatent EP 1 564 538 A2Google Scholar
  6. 6.
    Stoßdämpferprüfgerät S-A-T USB. Available at
  7. 7.
    Krause R (2013) Relation between PTI regulations and type approval regulations using the example of advanced driver assist systéme. CITA Conference, Seville, Spain, May 2013Google Scholar
  8. 8.
    Schüppel U (2014) Das Autonome Fahrzeug auf dem Prüfstand, DVR Presseseminar,FSD-Zentrale Stelle, Bonn. Available at
  9. 9.
    Buekenhoudt P (2011) Minimum phase shift. In: CITA: international motor vehicle inspection committee [online]. Belgium. Available at
  10. 10.
    Burdzik R, Konieczny L (2009) Diagnostic of shock-absorbers of car vehicles at changeable pressure in tire. Diagnostyka: diagnoza, prognoza, podstawa każdej decyzji / Polskie Towarzystwo Diagnostyki Technicznej 2009, č. 3, s. 6. Available at
  11. 11.
    Question de Madame la Députée Isabelle Tasiaux-De Neys à Monsieur Etienne Schouppe, Secrétaire d’Etat à la Mobilité, (2009) concernant les problèmes de passage au contrôle technique de la Fiat 500. Available at
  12. 12.
    Malmedahl G et al (2005) Analysis of automotive damper data and design of a portable measurement system. In: SAE 2005 world congress and exhibition, no. 2005-01-1043. SAE InternationalGoogle Scholar
  13. 13.
    Simms A, Crolla D (2002) The Influence of Damper Properties on Vehicle Dynamic Behavior, SAE Paper, 2002-01-0319Google Scholar
  14. 14.
    Sun T, Zhang Y, Barak P (2002) Quarter vehicle ride model. SAE Paper 2002-01-1581Google Scholar
  15. 15.
    Reimpell J, Stoll H (1996) The automotive chassis: engineering principles. SAE Inc., WarrendaleGoogle Scholar
  16. 16.
    Dixon JC (2007) The shock Absorber handbook. sae inc., WarrendaleCrossRefGoogle Scholar
  17. 17.
    Tsymberov A (1996) Improved non-intrusive automotive suspension testing apparatus with means to determine the condition of the dampers. SAE Technical Paper, nr. 26Google Scholar
  18. 18.
    Balike KP, Rakheja S, Stiharu I (2010) Influence of automotive damper asymmetry on the kinematic and dynamic responses, and optimal damper asymmetric parameters. Int J Veh Des 54(3):191–216CrossRefGoogle Scholar
  19. 19.
    Fukushima N, Hidaka K, Iwata K (1983) Optimum characteristics of automotive shock absorbers under driving conditions and road surfaces. Int J Veh Des 4:463–473Google Scholar
  20. 20.
    Reza-Kashyzadeh K, Ostad-ahmad-Ghorabi MJ, Arghavan A (2014) Investigating the effect of road roughness on automotive component. Eng Failure Anal 41:96–107. doi: 10.1016/j.engfailanal.2013.12.008. ISSN 13506307. Available at
  21. 21.
    Nashif AD, Jones DI, Henderson JP (1985) Vibration damping. Wiley, New YorkGoogle Scholar
  22. 22.
    Calvo JA, SAN ROMÁN JL, ÁLVAREZ-CALDAS C (2013) Procedure to verify the suspension system on periodical motor vehicle inspection. Int J Veh Des 63(1):2013CrossRefGoogle Scholar
  23. 23.
    Buekenhoudt P (2012) Study on a new suspension test method implemented in Belgium. GOCA, Proposal CITA News 2012–13/03/2012 7/7Google Scholar
  24. 24.
    Strecker Z et al (2015) Influence of shock absorber wearing on vehicle brake performance. J Intell Mater Syst Struct 26(14):1951–1958. doi: 10.1177/1045389X15591381 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Faculty of Mechanical engineeringBrno University of TechnologyBrnoCzech Republic

Personalised recommendations