Advertisement

Meccanica

, Volume 52, Issue 7, pp 1655–1668 | Cite as

Elastic properties of nanocomposite materials: influence of carbon nanotube imperfections and interface bonding

  • Marko ČanađijaEmail author
  • Marino Brčić
  • Josip Brnić
Article

Abstract

The paper at hand investigates degradation of elastic properties of a composite material reinforced by carbon nanotubes. Sources of degradation are waviness of a nanotube, vacancies and 5-7-7-5 defects. The manuscript aims to establish the computational procedure based on the atomistic finite element method for estimation of elastic properties by accounting for these defects. An epoxy nanocomposite with typical properties is selected and carefully analysed. Special attention is devoted to proper simulation of van der Waals forces at the matrix-nanotube interface. A series of numerical experiments with different waviness ratios and type of defects is performed and based on these results interpolation of elastic properties is carried out. It is found that proper modelling of van der Waals interactions and waviness has a profound influence on the mechanical behaviour of the nanocomposite, while the other type of defects are of secondary importance.

Keywords

Carbon nanotubes Nanocomposites Waviness Imperfections 

Notes

Acknowledgments

This work has been partially supported by Croatian Science Foundation under the Project No. 6876—Assessment of structural behaviour in limit state operating conditions. This support is gratefully acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest

References

  1. 1.
    Arasteh R, Omidi M, Rousta AHA, Kazerooni H (2011) A study on effect of waviness on mechanical properties of multi-walled carbon nanotube/epoxy composites using modified Halpin–Tsai theory. J Macromol Sci Part B Phys 50(12):2464–2480ADSCrossRefGoogle Scholar
  2. 2.
    Baji A, Mai Y, Wong S, Abtahi M, Du X (2010) Mechanical behavior of self-assembled carbon nanotube reinforced nylon 6,6 fibers. Compos Sci Technol 70(9):1401–1409CrossRefGoogle Scholar
  3. 3.
    Bradshaw RD, Fisher FT, Brinson LC (2003) Fiber waviness in nanotube-reinforced polymer composites—II: modeling via numerical approximation of the dilute strain concentration tensor. Compos Sci Technol 63(11):1705–1722CrossRefGoogle Scholar
  4. 4.
    Brcic M, Canadija M, Brnic J (2013) Estimation of material properties of nanocomposite structures. Meccanica 48(9):2209–2220CrossRefzbMATHGoogle Scholar
  5. 5.
    Brcic M, Canadija M, Brnic J (2015) Influence of waviness and vacancy defects on carbon nanotubes properties. Proced Eng 100:213–219CrossRefGoogle Scholar
  6. 6.
    Canadija M, Brcic M, Brnic J (2013) Bending behaviour of single-layered graphene nanosheets with vacancy defects. Eng Rev 33(1):9–14Google Scholar
  7. 7.
    Canadija M, Barretta R, de Sciarra FM (2016a) A gradient elasticity model of Bernoulli–Euler nanobeams in non-isothermal environments. Eur J Mech - A/Solids 55:243–255MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Canadija M, Barretta R, de Sciarra FM (2016b) On functionally graded Timoshenko nonisothermal nanobeams. Compos Struct 135:286–296CrossRefGoogle Scholar
  9. 9.
    Cebeci H, Villoria RGd, Hart AJ, Wardle BL (2009) Multifunctional properties of high volume fraction aligned carbon nanotube polymer composites with controlled morphology. Compos Sci Technol 69(15–16):2649–2656CrossRefGoogle Scholar
  10. 10.
    Chen WH, Cheng HC, Liu YL (2010) Radial mechanical properties of single-walled carbon nanotubes using modified molecular structure mechanics. Comput Mater Sci 47(4):985–993. doi: 10.1016/j.commatsci.2009.11.034 CrossRefGoogle Scholar
  11. 11.
    Chwał M (2011) Influence of vacancy defects on the mechanical behavior and properties of carbon nanotubes. Proced Eng 10:1579–1584CrossRefGoogle Scholar
  12. 12.
    Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44(9):1624–1652CrossRefGoogle Scholar
  13. 13.
    Fan Y, Goldsmith BR, Collins PG (2005) Identifying and counting point defects in carbon nanotubes. Nat Mater 4(12):906–911ADSCrossRefGoogle Scholar
  14. 14.
    Farsadi M, Öchsner A, Rahmandoust M (2013) Numerical investigation of composite materials reinforced with waved carbon nanotubes. J Compos Mater 47(11):1425–1434CrossRefGoogle Scholar
  15. 15.
    Fisher FT, Bradshaw RD, Brinson LC (2002) Effects of nanotube waviness on the modulus of nanotube-reinforced polymers. Appl Phys Lett 80(24):4647–4649ADSCrossRefGoogle Scholar
  16. 16.
    Fisher FT, Bradshaw RD, Brinson LC (2003) Fiber waviness in nanotube-reinforced polymer composites—I: modulus predictions using effective nanotube properties. Compos Sci Technol 63(11):1689–1703CrossRefGoogle Scholar
  17. 17.
    Frankland SJV, Harik VM, Odegard GM, Brenner DW, Gates TS (2003) The stress-strain behavior of polymer-nanotube composites from molecular dynamics simulation. Compos Sci Technol 63(11):1655–1661CrossRefGoogle Scholar
  18. 18.
    Ghavamian A, Rahmandoust M, Öchsner A (2012) A numerical evaluation of the influence of defects on the elastic modulus of single and multi-walled carbon nanotubes. Comput Mater Sci 62:110–116CrossRefGoogle Scholar
  19. 19.
    Gkikas G, Paipetis A (2014) Optimisation and analysis of the reinforcement effect of carbon nanotubes in a typical matrix system. Meccanica 50(2):461–478CrossRefGoogle Scholar
  20. 20.
    Gou J, Lau T (2005) Handbook of theoretical and computational nanotechnology. American Scientific Publishers, chap Modeling and Simulation of Carbon N anotube/Polymer Composites, pp 1–33Google Scholar
  21. 21.
    Halpin JC, Kardos JL (1976) Halpin–Tsai equations. A review. Polym Eng Sci 16(5):344–352CrossRefGoogle Scholar
  22. 22.
    Hou W, Xiao S (2007) Mechanical behaviors of carbon nanotubes with randomly located vacancy defects. J Nanosci Nanotechnol 7(12):4478–4485CrossRefGoogle Scholar
  23. 23.
    Jiang LY, Huang Y, Jiang H, Ravichandran G, Gao H, Hwang KC, Liu B (2006) A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force. J Mech Phys Solids 54(11):2436–2452ADSCrossRefzbMATHGoogle Scholar
  24. 24.
    Jorgensen WL, Severance DL (1990) Aromatic-aromatic interactions: free energy profiles for the benzene dimer in water, chloroform, and liquid benzene. JACS 112(12):4768–4774CrossRefGoogle Scholar
  25. 25.
    Joshi UA, Sharma SC, Harsha SP (2011) Effect of waviness on the mechanical properties of carbon nanotube based composites. Phys E 43(8):1453–1460CrossRefGoogle Scholar
  26. 26.
    Kouznetsova V, Brekelmans W, Baaijens F (2001) Approach to micro-macro modeling of heterogeneous materials. Comput Mech 27(1):37–48. doi: 10.1007/s004660000212 CrossRefzbMATHGoogle Scholar
  27. 27.
    Li C, Chou TW (2003) A structural mechanics approach for the analysis of carbon nanotubes. Int J Solids Struct 40(10):2487–2499CrossRefzbMATHGoogle Scholar
  28. 28.
    Li K, Saigal S (2007) Micromechanical modeling of stress transfer in carbon nanotube reinforced polymer composites. Mater Sci Eng A 457(1–2):44–57CrossRefGoogle Scholar
  29. 29.
    Liao K, Li S (2001) Interfacial characteristics of a carbon nanotube-polystyrene composite system. Appl Phys Lett 79(25):4225–4227. doi: 10.1063/1.1428116 ADSCrossRefGoogle Scholar
  30. 30.
    Meguid S, Wernik J, Cheng Z (2010) Atomistic-based continuum representation of the effective properties of nano-reinforced epoxies. Int J Solids Struct 47(13):1723–1736CrossRefzbMATHGoogle Scholar
  31. 31.
    Motamedi M, Eskandari M, Yeganeh M (2012) Effect of straight and wavy carbon nanotube on the reinforcement modulus in nonlinear elastic matrix nanocomposites. Mater Des 34:603–608CrossRefGoogle Scholar
  32. 32.
    Omidi M, Hossein Rokni DT, Milani AS, Seethaler RJ, Arasteh R (2010) Prediction of the mechanical characteristics of multi-walled carbon nanotube/epoxy composites using a new form of the rule of mixtures. Carbon 48(11):3218–3228CrossRefGoogle Scholar
  33. 33.
    Pantano A, Cappello F (2008) Numerical model for composite material with polymer matrix reinforced by carbon nanotubes. Meccanica 43(2):263–270Google Scholar
  34. 34.
    Pantano A, Modica G, Cappello F (2008) Multiwalled carbon nanotube reinforced polymer composites. Mater Sci Eng, A 486(1–2):222–227Google Scholar
  35. 35.
    Pozrikidis C (2009) Effect of the Stone–Wales defect on the structure and mechanical properties of single-wall carbon nanotubes in axial stretch and twist. Arch Appl Mech 79(2):113–123CrossRefzbMATHGoogle Scholar
  36. 36.
    Rafiee R (2013) Influence of carbon nanotube waviness on the stiffness reduction of CNT/polymer composites. Compos Struct 97:304–309Google Scholar
  37. 37.
    Rajasekaran G, Narayanan P, Parashar A (2016) Effect of point and line defects on mechanical and thermal properties of graphene: a review. Crit Rev Solid State Mater Sci 41(1):47–71ADSCrossRefGoogle Scholar
  38. 38.
    Rappé AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. JACS 114(25):10024–10035Google Scholar
  39. 39.
    Savvas D, Papadopoulos V, Papadrakakis M (2012) The effect of interfacial shear strength on damping behavior of carbon nanotube reinforced composites. Int J Solids Struct 49(26):3823–3837. doi: 10.1016/j.ijsolstr.2012.08.031 CrossRefGoogle Scholar
  40. 40.
    Schadler L, Giannaris S, Ajayan P (1998) Load transfer in carbon nanotube epoxy composites. Appl Phys Lett 73(26):3842–3844. doi: 10.1063/1.122911 ADSCrossRefGoogle Scholar
  41. 41.
    Shokrieh MM, Rafiee R (2010) On the tensile behavior of an embedded carbon nanotube in polymer matrix with non-bonded interphase region. Compos Struct 92(3):647–652Google Scholar
  42. 42.
    Shokrieh MM, Rafiee R (2012) Development of a full range multi-scale model to obtain elastic properties of CNT/polymer composites. Iran Polym J (English Edition) 21(6):397–402CrossRefGoogle Scholar
  43. 43.
    Szeluga U, Kumanek B, Trzebicka B (2015) Synergy in hybrid polymer/nanocarbon composites. A review. Compos Part A Appl Sci Manuf 73:204–231CrossRefGoogle Scholar
  44. 44.
    Tan H, Jiang LY, Huang Y, Liu B, Hwang KC (2007) The effect of van der Waals-based interface cohesive law on carbon nanotube-reinforced composite materials. Compos Sci Technol 67(14):2941–2946Google Scholar
  45. 45.
    Tserpes KI, Papanikos P (2007) The effect of Stone–Wales defect on the tensile behavior and fracture of single-walled carbon nanotubes. Compos Struct 79(4):581–589CrossRefGoogle Scholar
  46. 46.
    Tserpes KI, Papanikos P, Labeas G, Pantelakis SG (2008) Multi-scale modeling of tensile behavior of carbon nanotube-reinforced composites. Theor Appl Fract Mech 49(1):51–60CrossRefGoogle Scholar
  47. 47.
    Tucker CL III, Liang E (1999) Stiffness predictions for unidirectional short-fiber composites: review and evaluation. Compos Sci Technol 59(5):655–671CrossRefGoogle Scholar
  48. 48.
    Weldon DN, Blau WJ, Zandbergen HW (1995) A high resolution electron microscopy investigation of curvature in carbon nanotubes. Chem Phys Lett 241(4):365–372ADSCrossRefGoogle Scholar
  49. 49.
    Wong M, Paramsothy M, Xu X, Ren Y, Li S, Liao K (2003) Physical interactions at carbon nanotube-polymer interface. Polymer 44(25):7757–7764. doi: 10.1016/j.polymer.2003.10.011 CrossRefGoogle Scholar
  50. 50.
    Xia Z, Zhou C, Yong Q, Wang X (2006) On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites. Int J Solids Struc 43(2):266–278. doi: 10.1016/j.ijsolstr.2005.03.055 MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Yazdchi K, Salehi M (2011) The effects of CNT waviness on interfacial stress transfer characteristics of CNT/polymer composites. Compos Part A Appl Sci Manuf 42(10):1301–1309CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Faculty of Engineering, Department of Engineering MechanicsUniversity of RijekaRijekaCroatia

Personalised recommendations