Skip to main content
Log in

The influence of a magnetic field on the mechanical behavior of a fluid interface

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This work focuses on a theoretical investigation of the shape and equilibrium height of a magnetic liquid–liquid interface formed between two vertical flat plates in response to vertical magnetic fields. The formulation is based on an extension of the so called Young–Laplace equation for an incompressible magnetic fluid forming a two-dimensional free interface. A first order dependence of the fluid susceptibility with respect to the magnetic field is considered. The formulation results in a hydrodynamic-magnetic coupled problem governed by a nonlinear second order differential equation that describes the liquid–liquid meniscus shape. According to this formulation, five relevant physical parameters are revealed in this fluid static problem. The standard gravitational Bond number, the contact angle and three new parameters related to magnetic effects in the present study: the magnetic Bond number, the magnetic susceptibility and its derivative with respect to the field. The nonlinear governing equation is integrated numerically using a fourth order Runge-Kutta method with a Newton–Raphson scheme, in order to accelerate the convergence of the solution. The influence of the relevant parameters on the rise and shape of the liquid–liquid interface is examined. The interface shape response in the presence of a magnetic field varying with characteristic wavenumbers is also explored. The numerical results are compared with asymptotic predictions also derived here for small values of the magnetic Bond number and constant susceptibility. A very good agreement is observed. In addition, all the parameters are varied in order to understand how the scales influence the meniscus shape. Finally, we discuss how to control the shape of the meniscus by applying a magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosensweig RE (1985) Ferrohydrodynamics, New York, Cambridge University Press, 1985: republished by New York, Dover Publications, 1997

  2. Odenbach S (ed) (2009) Colloidal magnetic fluids: basics, development and application of ferrofluids, Lect Notes Phys 763, Springer, Berlin Heidelberg

  3. Cunha FR, Couto HLG, Marcelino NB (2007) A study on magnetic convection in a narrow rectangular cavity. Magnetohydrodynamics 43(4):421–428

    ADS  Google Scholar 

  4. Gontijo RG, Cunha FR (2012) Experimental investigation on thermo-magnetic convection inside cavities. J Nanosci Nanotechnol 12:9198–9207

    Article  Google Scholar 

  5. Rinaldi C, Chaves A, Elborai S, He X, Zahn M (2005) Magnetic fluid rheology and flows. Curr Opin Colloid Interface Sci 10:141–157

    Article  Google Scholar 

  6. Gontijo RG (2013) Micromechanics and hydrodynamics of magnetic suspensions, Ph.D. Thesis, University of Brasilia—Brazil, p 227 (in Portuguese)

  7. Rosensweig RE, Elborai S, Lee S-H, Zahn M (2005) Theory and measurements of ferrofluid meniscus shape in applied uniform horizontal and vertical magnetic fields. J Magn Magn Mater 289:192–195

    Article  ADS  Google Scholar 

  8. Bashtovoi V, Bossis G, Kuzhir P, Reks A (2005) Magnetic field effect on capillary rise of magnetic fluids. J Magn Magn Mater 289:376–378

    Article  ADS  Google Scholar 

  9. Rosenthal AD, Rinaldi C, Franklin T, Zahn M (2004) Torque measurements in spin-up flow of ferrofluids. J Fluids Eng 126(2):198–205. doi:10.1115/1.1669030

    Article  Google Scholar 

  10. Chaves A, Gutman F, Rinaldi C (2006) Torque and bulk flow of ferrofluid in an annular gap subjected to a rotating magnetic field. J Fluids Eng 129(4):412–422. doi:10.1115/1.2567918

    Article  Google Scholar 

  11. Eissmann P-B, Lange A, Odenbach S (2011) Meniscus of a magnetic fluid in the field of a current-carrying wire: two dimensional numerical simulations. Magnetohydrodynamics 47(2):149–157

    Google Scholar 

  12. Bragard J, Lebon G (1994) Capillary ascension in porous media: a scaling law. Transp Porous Med 16:253–261

    Article  Google Scholar 

  13. Bacri J-C, Perzunski R, Shliomis MI, Burde GI (1995) “Negative-viscosity“ effect in a magnetic fluid. Phys Rev Lett 75(11):2128–2131

    Article  ADS  Google Scholar 

  14. Bashtovoi V, Kuzhir P, Reks A (2002) Capillary ascension of magnetic fluids. J Magn Magn Mater 252:265–267

    Article  ADS  Google Scholar 

  15. Gontijo RG, Cunha FR (2015) Dynamic numerical simulations of magnetically interacting suspensions in creeping flow. Powder Technol 279:145–146

    Article  Google Scholar 

  16. John T, Rannacher D, Engel A (2007) Influence of surface tension on the conical meniscus of a magnetic fluid in the field of a current-carrying wire. J Magn Magn Mater 309(4):31–35

    Article  ADS  Google Scholar 

  17. John T, May K, Stannarius R (2011) Meniscus of a ferrofluid around a vertical cylindrical wire carrying electric current. Phys Rev E 83(5):056308

  18. Bashtovoi V, Lavrovab OA, Polevikovb VK, Tobiskac L (2002) Computer modeling of the instability of a horizontal magnetic-fluid layer in a uniform magnetic field. J Magn Magn Mater 252:299–301

    Article  ADS  Google Scholar 

  19. Polevikova V, Tobiskab L (2005) Instability of magnetic fluid in a narrow gap between plates. J Magn Magn Mater 289:379–381

    Article  ADS  Google Scholar 

  20. Boudouvis AG, Puchalla JL, Scriven LE (1988) Interaction of capillary wetting and fringing magnetic field in ferrofluid systems. J Colloid Interface Sci 124:677–687

    Article  Google Scholar 

  21. Wohlhuter FK, Basaran OA (1993) Effects of physical properties and geometry on shapes and stability of polarizable drops in external fields. J Magn Magn Mater 122:259–263

    Article  ADS  Google Scholar 

  22. Seric I, Afkhami S, Kondic L (2014) Interfacial instability of thin ferrofluid films under a magnetic field. J Fluid Mech 755:R1. doi:10.1017/jfm.2014.435

    Article  ADS  MathSciNet  Google Scholar 

  23. Jansons KM (1983) Determination of the constitutive equations for a magnetic fluid. J Fluid Mech 137:187–216

  24. Ferderhof BU (2000) Magnetoviscosity and relaxation in ferrofluids. Phys Rev E 62:3848–3854

    Article  ADS  Google Scholar 

  25. Shliomis MI (2001a) Comment on magnetoviscosity and relaxation in ferrofluids. Phys Rev E 64:063501

    Article  ADS  Google Scholar 

  26. Shliomis MI (2001b) Ferrohydrodynamics: testing a third magnetization equation. Phys Rev E 64:063501

    Article  ADS  Google Scholar 

  27. Cunha FR, Sobral YD (2004) Characterization of the physical parameters in a process of magnetic separation and pressure driven flows of a magnetic fluid in a cylindrical tube. Phys A 343:36–64

    Article  Google Scholar 

  28. Hinch EJ (1991) Pertubation methods. Cambridge University Press, Cambridge

    Book  Google Scholar 

  29. Albernaz DL, Cunha FR (2013) Unsteady motion of a spherical bubble in a complex fluid: mathematical modelling and simulation. Appl Math Model 37:8972–8984

    Article  MathSciNet  Google Scholar 

  30. Cunha FR, Albernaz DL (2013) Oscillatory motion of a spherical bubble in a non-Newtonian fluid. J Non-Newton Fluid Mech 191:35–44

  31. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in Fortran 77, vol 1. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  32. Lewis A, Knowles G (1992) Image compression using the 2-D wavelet transform. In: IEEE transactions on image processing, vol 1. 55, NBS, Washington, pp 224–250

  33. Shapiro JM (1993) Embedded image coding using zerotrees of wavelet coefficient. IEEE Trans Signal Process 41:34453463

    Article  Google Scholar 

  34. Poularikas AD (2000) The transforms and applications handbook, 2nd edn. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The work was supported in part by the Brazilian funding agencies CNPq- Ministry of Science, Technology and Innovation of Brazil, and by the CAPES Foundation—Ministry of Education of Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. R. Cunha.

Appendix

Appendix

In this appendix we present more details on the full expression of the asymptotic solution \({\mathcal {O}}(Bo_m)\).

$$\begin{aligned} Y_1(X)&= -\frac{\text{ csch }^4\left( \sqrt{Bo}\right) }{96 Bo^{5/2} D_0^3} \left\{ 12 \sqrt{Bo} D_0 \left[ 3 Bo^2 D_0^2 D_1+2 (\xi -\beta _0^{*}) \cot ^2(\alpha )\right] \right. \\&\quad - 24 \sqrt{Bo} D_0 \left[ 2 Bo^2 D_0^2 D_1+(\xi -\beta _0^{*}) \cot ^2(\alpha )\right] \cosh \left( 2 \sqrt{Bo}\right) \\&\quad +12 Bo^{5/2} D_0^3 D_1 \cosh \left( 4 \sqrt{Bo}\right) + \cot ^2(\alpha ) \left[ 8 (-\xi +\beta _0^{*}) \sqrt{Bo} D_0 \cosh \left( \alpha _4\right) \right. \\&\quad+ 4 \sqrt{Bo} \left\{ 2 \xi D_0-\beta _0^{*} \left[ 2 D_0+3 \cot (\alpha ) (1+X)\right] \right\} \cosh \left( \alpha _3\right) \\&\quad+4 \sqrt{Bo} D_0 \cosh \left( 2 \alpha _3\right) \left[ \xi - \beta _0^{*} \right] -8 \xi \sqrt{Bo} D_0 \cosh \left( 2 \sqrt{Bo} X\right) \\&\quad+8 \beta _0^{*} \sqrt{Bo} D_0 \cosh \left( 2 \sqrt{Bo} X\right) + 8 \sqrt{Bo} D_0 \cosh \left( \alpha _1\right) \left[ \xi -\beta _0^{*} \right] \\&\quad-12 \beta _0^{*} \sqrt{Bo} \cot (\alpha ) \cosh \left( \alpha _1\right) \left[ 1-X\right] +4 \xi \sqrt{Bo} D_0 \cosh \left( 2 \alpha _1\right) \\&\quad-4 \beta _0^{*} \sqrt{Bo} D_0 \cosh \left( 2 \alpha _1\right) -8 \sqrt{Bo} D_0 \cosh \left( \alpha _2\right) \left[ \xi - \beta _0^{*}\right] \\&\quad+\beta _0^{*} \cot (\alpha ) \sinh \left[ \sqrt{Bo} (1-3 X)\right] +3 \beta _0^{*} \cot (\alpha ) \left[ \sinh \left( \alpha _4\right) -\sinh \left( \alpha _2\right) \right] \\&\quad\left. \left. -12 \beta _0^{*} \cot (\alpha )\left[ \sinh \left( \alpha _1\right) - \sinh \left( \alpha _3\right) \right] +\beta _0^{*} \cot (\alpha )\sinh \left( \alpha _5\right) \right] \right\} \end{aligned}$$

with

$$\begin{aligned} \alpha _1&=\sqrt{Bo} (1+X) \quad \alpha _2= \sqrt{Bo} (3+X) \quad \alpha _3=\sqrt{Bo} (-1+X)\\ \alpha _4&=\sqrt{Bo} (-3+X) \quad \alpha _5=\sqrt{Bo} (1+3X) \quad \xi= \chi _0\left( 1+\chi _0\right) \end{aligned}$$
Fig. 1
figure 1

A sketch of the problem used in the mathematical formulation

Fig. 2
figure 2

A sketch of the free surface’s geometrical parameters

Fig. 3
figure 3

Combination of \(Bo_m\) and \(\chi _0\) in which a magnetic fluid in the small gap between two parallel plates can rise against gravity for contact angles higher than \(\pi /2\). This curve was plotted using the constant curvature theory, Eq. (39). The inserts in this figure show two possible configuration of the meniscus. In this case we consider \(\beta = 1/10\) and \(Bo = 1/10\)

Fig. 4
figure 4

Equilibrium height versus the magnetic Bond number. The black circles represent numerical results, the solid line denotes the exact solution for small values of the magnetic Bond number given by the \({\mathcal {O}}(Bo_m)\) asymptotic theory, while the dashed line denotes the \({\mathcal {O}}(Bo_m^2)\) solution. The insert in this figure shows the detail of the asymptotic for smaller values of the magnetic Bond number. For this plot: \(Bo=3/10\), \(\chi _0=1/10\), \(\beta _0^{*}=1/10\) and \(\alpha = \pi /2 -1/10\)

Fig. 5
figure 5

Equilibrium height as a function of the magnetic Bond number. The black circles represent numerical values, the solid line denotes the theoretical solution for the constant curvature condition. For this plot: \(Bo=3/10\), \(\chi _0=1/10\), \(\beta _0^{*}=1/10\) and \(\alpha = \pi /2 - 1/10\)

Fig. 6
figure 6

Meniscus shape for different values of n. a Stands for \(n=1\), b for \(n=2\), c for \(n=3\) and d for \(n=4\). For this plot: \(Bo=3/10\), \(\chi _0=1/10\), \(\beta _0^{*}=1/10\), \(\alpha = \pi /2 - 1/10\), \(\varepsilon =1\) and magnetic Bond numbers varying from 0 to 1.5

Fig. 7
figure 7

Meniscus shape for \(n = 100\). The solid line represents \(Bo_m = 0\) while the dashed line considers \(Bo_m = 3/2\). For this plot: \(Bo=3/10\), \(\chi _0=1/10\), \(\beta _0^{*}=1/10\), \(\alpha = \pi /2 - \beta_{0}^{*}\), \(\varepsilon =1\)

Fig. 8
figure 8

Meniscus shape for three different cases. The inserts in this figure show the Fourier transform of the meniscus shape represented by the amplitude as a function of the wavenumber. The solid line represents \(Bo_m = 1/10\), the dashed one features \(Bo_m = 1/4\) and the dotted one represents \(Bo_m = 1/2\). a The FFT for \(Bo_m = 1/10\), b \(Bo_m = 1/4\) and c \(Bo_m = 1/2\). For this plot: \(\varepsilon =1/2\), \(\chi _0=1/10\), \(\beta _0^{*}=0\), \(\alpha = \pi /2 + \frac{1}{8}\), \(k/\pi = 2\)

Fig. 9
figure 9

Meniscus shape for a non magnetic case \(Bo_m =0\) (a) and \(Bo_m = 1/5\) (b). The inserts in (a) and (b) giving the amplitute as a function of the wavenumber represent the Fourier transform of the meniscus shape for both cases studied. For this plot: \(\varepsilon =3\), \(Bo=3/10\), \(\chi _0=1/10\), \(\beta _0^{*}=1/10\), \(\alpha = \pi /2 - \frac{1}{10}\), \(k/\pi = 2\)

Fig. 10
figure 10

Meniscus Haar wavelet transform. a \(k/\pi =2\), \(Bo_M=7/5\), \(\chi _0=1/10\), \(\beta _0^{*}=0\), \(\varepsilon = 1.0\) and \(\alpha = \frac{\pi }{2}-\frac{1}{10}\), b \(k/\pi = 4\), \(Bo_M=1\), \(\chi _0=1/10\), \(\beta _0^{*}=1/5\), \(\varepsilon = 7/10\) and \(\alpha = \frac{\pi }{2}-\frac{1}{10}\)

Fig. 11
figure 11

Source of meniscus shape used to compute the wavelet transform. a Meniscus shape for \(k/\pi =2\), \(Bo_M=7/5\), \(\chi _0=1/10\), \(\beta _0^{*}=0\), \(\varepsilon = 1.0\) and \(\alpha = \frac{\pi }{2}-\frac{1}{10}\). b Correspondent FFT. c \(k/\pi = 4\), \(Bo_M=1\), \(\chi _0=1/10\), \(\beta _0^{*}=1/5\), \(\varepsilon = 7/10\) and \(\alpha = \frac{\pi }{2}-\frac{1}{10}\). d Correspondent FFT

Fig. 12
figure 12

Comparison between the amplitude of the first harmonic in the wavenumber spectrum and the Magnetic Bond number. The dotted curve can be approximated as second order polynomial given by \(A = 408.38 + 1288.59Bo_m + 199.65Bo_m^2\). For this plot: \(\varepsilon =1\), \(\chi _0=1/10\), \(\beta _0^{*}=0\), \(\alpha = \pi /2 - \frac{1}{8}\), \(k/\pi = 1\)

Fig. 13
figure 13

Comparison between the meniscus patterns formed by different controlling parameters. a \(\varepsilon =1\), \(\chi _0=1/10\), \(\beta _0^{*}=0\), \(\alpha = \pi /2 - \frac{1}{8}\), \(k/\pi = 2\), \(Bo_m = 3/2\). b \(\varepsilon =1\), \(\chi _0=1/10\), \(\beta _0^{*}=0\), \(\alpha = \pi /2 - \frac{1}{8}\), \(k/\pi = 1\), \(Bo_m = 3/2\). c \(\varepsilon =3\), \(\chi _0=1/10\), \(\beta _0^{*}=0\), \(\alpha = \pi /2 - \frac{1}{8}\), \(k/\pi = 1\), \(Bo_m = 13/10\). d \(\varepsilon =3/10\), \(\chi _0=1/10\), \(\beta _0^{*}=1/10\), \(\alpha = \pi /2 - \frac{1}{5}\), \(k/\pi = 1\), \(Bo_m = 1/10\). e \(\varepsilon =1\), \(\chi _0=1/10\), \(\beta _0^{*}=0\), \(\alpha = \pi /2 + \frac{1}{4}\), \(k/\pi = 1\), \(Bo_m = 1/2\). f \(\varepsilon =3\), \(\chi _0=1/10\), \(\beta _0^{*}=0\), \(\alpha = \pi /2 - \frac{1}{6}\), \(k/\pi = 6\), \(Bo_m = 2\)

Fig. 14
figure 14

Equilibrium rise D as a function of the contact angle \(\alpha\). The solid line represents the theory with constant curvature and magnetic effects, Eq. (39), while the dashed line is the numerical solution. For this plot: \(\varepsilon =0\), \(Bo=3/10\), \(\chi _0=1/10\), \(\beta _0^{*}=1/10\), \(Bo_m = 1/10\)

Fig. 15
figure 15

Equilibrium rise D as a function of \(\varepsilon\). The insert in this figure shows two different meniscus shapes. In the insert the solid line represents \(\varepsilon = 0\) while the dashed line denotes \(\varepsilon = 5/4\). For this plot: \(n =1\), \(Bo=3/10\), \(\chi _0=1/10\), \(\beta _0^{*}=1/10\), \(Bo_m = 1.0\). The solid line is well fitted by the relation: \(D = c_0 + c_1 \varepsilon + c_2 \varepsilon ^2 + c_3 \varepsilon ^3\), where \(c_0= 593/1000, c_1 = 3/1000 , c_2 = 199/500\) and \(c_3=-3/1000\)

Fig. 16
figure 16

Meniscus shape considering symmetrical boundary conditions (a) and non-symmetrical boundary conditions (b). For this plot: \(n =1\), \(Bo=3/10\), \(\chi _0=1/10\), \(\beta _0^{*}=1/10\), \(\varepsilon = 1.0\) and \(\alpha = \frac{\pi }{2}-1/10\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gontijo, R.G., Malvar, S., Sobral, Y.D. et al. The influence of a magnetic field on the mechanical behavior of a fluid interface. Meccanica 52, 1309–1327 (2017). https://doi.org/10.1007/s11012-016-0488-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0488-x

Keywords

Navigation