Skip to main content
Log in

Inviscid instability of two-fluid free surface flow down an incline

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The inviscid temporal stability analysis of two-fluid parallel shear flow with a free surface, down an incline, is studied. The velocity profiles are chosen as piecewise-linear with two limbs. The analysis reveals the existence of unstable inviscid modes, arising due to wave interaction between the free surface and the shear-jump interface. Surface tension decreases the maximum growth rate of the dominant disturbance. Interestingly, in some limits, surface tension destabilises extremely short waves in this flow. This can happen because of the interaction with the shear-jump interface. This flow may be compared with a corresponding viscous two-fluid flow. Though viscosity modifies the stability properties of the flow system both qualitatively and quantitatively, there is qualitative agreement between the viscous and inviscid stability analysis when the less viscous fluid is closer to the free surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. In: Marshall W, Wilkinson DH (eds) The international series of monographs and physics. Clarendon Press, Oxford

    Google Scholar 

  2. Drazin PG, Reid WH (1985) Hydrodynamic stability. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  3. Friedlander S, Yudovich V (1999) Instabilities in fluid motion. Not Am Math Soc 46:1358–1367

    MathSciNet  MATH  Google Scholar 

  4. Lin CC (1944) On the stability of two-dimensional parallel flows. Proc Natl Acad Sci 30:316–324

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Lin ZW (2005) Some recent results on instability of ideal plane flows. Contemp Math 371:217–229

    Article  MathSciNet  MATH  Google Scholar 

  6. Longuet-Higgins MS (1994) Shear instability in spilling breakers. Proc R Soc London Ser A 446:399

    Article  ADS  MATH  Google Scholar 

  7. Duncan JH (2001) Spilling breakers. Annu Rev Fluid Mech 33:519

    Article  ADS  MATH  Google Scholar 

  8. Triantafyllou GS, Dimas AA (1989) Interaction of two-dimensional separated flows with a free surface at low Froude numbers. Phys Fluids A 1:1813

    Article  ADS  Google Scholar 

  9. Olsson PJ, Henningson DS (1993) Direct optimal disturbance in watertable flow. Technical Report TRITA-MEK 1993:11, Royal Institute of Technology

  10. Bakas NA, Ioannou PJ (2009) Modal and nonmodal growths of inviscid planar perturbations in shear flows with a free surface. Phys Fluids 21:024102

    Article  ADS  MATH  Google Scholar 

  11. Renardy M (2009) Short wave stability for inviscid shear flow. SIAM J Appl Math 69:763–768

    Article  MathSciNet  MATH  Google Scholar 

  12. Kaffel A, Renardy M (2011) Surface modes in inviscid free surface shear flows. Z Angew Math Mech 91:649–652

    Article  MathSciNet  MATH  Google Scholar 

  13. Usha R, Tammisola O, Govindarajan R (2013) Linear stability of miscible two-fluid flow down an incline. Phys Fluids 25:104102

    Article  ADS  MATH  Google Scholar 

  14. Kao TW (1968) Role of viscosity stratification in the instability of two-layer flow down an incline. J Fluid Mech 33:561–572

    Article  ADS  MATH  Google Scholar 

  15. Sahu KC, Govindarajan R (2014) Instability of a free-shear layer in the vicinity of a viscosity-stratified layer. J Fluid Mech 752:626–648

    Article  ADS  MATH  Google Scholar 

  16. Yih C-S (1967) Instability due to viscosity stratification. J Fluid Mech 27:337–352

    Article  ADS  MATH  Google Scholar 

  17. Ozgen S, Degrez G, Sarma GSR (1998) Two-fluid boundary layer instability. Phys Fluids 10:2746

    Article  ADS  Google Scholar 

  18. Renardy Y (1985) Instability at the interface between two shearing fluids in a channel. Phys Fluids 28:3441

    Article  ADS  MATH  Google Scholar 

  19. Hooper AP (1985) Long-wave instability at the interface between two viscous fluids: thin layer effects. Phys Fluids 28:1613

    Article  ADS  MATH  Google Scholar 

  20. Hooper AP, Boyd WGC (1983) Shear-flow instability at the interface between two viscous fluids. J Fluid Mech 128:507–528

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Hooper AP, Boyd WGC (1987) Shear-flow instability due to a wall and a viscosity discontinuity at the interface. J Fluid Mech 179:201

    Article  ADS  MATH  Google Scholar 

  22. Esch RE (1957) The instability of a shear layer between two parallel streams. J Fluid Mech 3:289–303

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Miles JW (1959) On the generation of surface waves by shear flows. Part 3. J Fluid Mech 7:583–598

    Article  ADS  MATH  Google Scholar 

  24. Lindsay KA (1984) The Kelvin–Helmholtz instability for a viscous interface. Acta Mech 52:51–61

    Article  MATH  Google Scholar 

  25. Weinstein SJ, Ruschak KJ (2004) Coating flows. Annu Rev Fluid Mech 36:29

    Article  ADS  MATH  Google Scholar 

  26. Kistler SF, Schweizer PM (1997) Liquid film coating. Chapman and Hall, London

    Book  Google Scholar 

  27. Loewenherz DS, Lawrence CJ (1989) The effect of viscosity stratification on the instability of a free surface flow at low-Reynolds number. Phys Fluids A 1:1686

    Article  ADS  MATH  Google Scholar 

  28. Yih CS (1972) Surface waves in flowing water. J Fluid Mech 51:209–220

    Article  ADS  MATH  Google Scholar 

  29. Hur VM, Lin Z (2008) Unstable surface waves in running water. Commun Math Phys 282:733–796

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Renardy M, Renardy Y (2012) On the stability of inviscid parallel shear flows with a free surface. J Math Fluid Mech 15:129–137

    MathSciNet  MATH  Google Scholar 

  31. Morland LC, Saffman PG, Yuen HC (1991) Waves generated by shear layer instabilities. Proc R Soc Lond A 433:441–450

    Article  ADS  MATH  Google Scholar 

  32. Shirra VI (1993) Surface waves on shear currents: solution of the boundary-value problem. J Fluid Mech 252:565–584

    Article  ADS  MathSciNet  Google Scholar 

  33. Longuet-Higgins MS (1998) Instabilities of a horizontal shear flow with a free surface. J Fluid Mech 364:147–162

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Voronovich AG, Lobanov ED, Rybak SA (1980) On the stability of gravitational-capillary waves in the presence of a vertically non-uniform current. Izv Atmos Ocean Phys 16:220–222

    Google Scholar 

  35. Engevik L (2000) A note on the instability of a horizontal shear flow with free surface. J Fluid Mech 406:337–346

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Bresch D, Renardy M (2013) Kelvin–Helmholtz instability with a free surface. Z Angew Math Phys 64:905–915

    Article  MathSciNet  MATH  Google Scholar 

  37. Zalosh RG (1976) Discretized simulation of vortex sheet evolution with buoyancy and surface tension effects. AIAA J 14:1517–1523

    Article  ADS  MATH  Google Scholar 

  38. Rangel RH, Sirignano WA (1988) Nonlinear growth of Kelvin–Helmholtz instability: effect of surface tension and density ratio. Phys Fluids 31:1845–1855

    Article  ADS  Google Scholar 

  39. Drazin PG, Howard LN (1962) The instability to long waves of unbounded parallel inviscid flow. J Fluid Mech 14:257–283

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Michalke A (1964) On the inviscid instability of the hyperbolic-tangent velocity profile. J Fluid Mech 19:543–556

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Tatsumi T, Gotoh K, Ayukawa K (1964) The stability of a free boundary layer at large Reynolds numbers. J Phys Soc Jpn 19:1966–1980

    Article  ADS  MATH  Google Scholar 

  42. Pouliquen O, Chomaz JM, Huerre P (1994) Propagating Holmboe waves at the interface between two immiscible fluids. J Fluid Mech 266:277–302

    Article  ADS  MathSciNet  Google Scholar 

  43. Redekopp LG (2002) Elements of instability theory for environmental flows. In: Grimshawet R et al (eds) Environmental stratified flows. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  44. Alabduljalil S, Rangel RH (2006) Inviscid instability of an unbounded shear layer: effect of surface tension, density and velocity profile. J Enge Math 54:99–118

    Article  MathSciNet  MATH  Google Scholar 

  45. Yecko P, Zaleski S, Fullana J-M (2002) Viscous modes in two-phases mixing layers. Phys Fluids 14:4115

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Boeck T, Zaleski S (2005) Viscous versus inviscid instability of two-phase mixing layers with continuous velocity profile. Phys Fluids 17:032106

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Hinch EJ (1984) A note on the mechanism of the instability at the interface between two shearing fluids. J Fluid Mech 144:463

    Article  ADS  Google Scholar 

  48. Otto T, Rossi M, Boeck T (2013) Viscous instability of a sheared liquid–gas interface: dependence on fluid properties and basic velocity profile. Phys Fluids 25:032103

    Article  ADS  Google Scholar 

  49. Carpenter JR, Tedford EW, Heifetz E, Lawrence GA (2013) Instability in stratified shear flow: review of a physical interpretation based on interacting waves. Appl Mech Rev 64:060801

    Article  Google Scholar 

  50. Guha A, Lawrence GA (2014) A wave interaction approach to studying non-modal homogeneous and stratified shear instabilities. J Fluid Mech 755:336–364

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Usha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Usha, R., Govindarajan, R. et al. Inviscid instability of two-fluid free surface flow down an incline. Meccanica 52, 955–972 (2017). https://doi.org/10.1007/s11012-016-0455-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0455-6

Keywords

Navigation