Skip to main content
Log in

Analytical formulas and design charts for transversely isotropic half-spaces subject to linearly distributed pressures

  • Nonlinear Dynamics, Identification and Monitoring of Structures
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

We provide analytical formulas and design charts for computing displacements, strains and stresses in transversely isotropic half-spaces subject to linearly distributed vertical pressures. The domain integrals extended to the loaded region, resulting from the solution associated with a vertical point load, are first transformed into boundary integrals. For polygonal domains, the boundary integrals are further reduced to algebraic sums depending upon the loading function and the position vertices of the loaded region. A detailed account of this transformation is reported for all integrals in order to highlight the singularities to be coped with and how they can be circumvented. Design charts for the vertical stress are reported in order to validate the proposed formulation. Finally, the values of displacements and stresses underneath a foundation of arbitrary shape comparatively show the influence of modelling half-spaces as isotropic or transversely isotropic media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Anyaegbunam AJ (2014) Complete stress and displacements in a cross-anisotropic half-space caused by a surface vertical point load. Int J Geomech 14(2):171–181

    Article  Google Scholar 

  2. Argatov I, Sabina F (2012) Spherical indentation of a transversely isotropic elastic half-space reinforced with a thin layer. Int J Eng Sci 50:132–143

    Article  Google Scholar 

  3. Atkinson J (1975) Anisotropic elastic deformation in laboratory tests on undisturbed London clay. Géotechnique 25:357–374

    Article  Google Scholar 

  4. Barden L (1963) Stresses and displacements in a cross-anisotropic soil. Géotechnique 13:198–210

    Article  Google Scholar 

  5. Chen WT (1966) On some problems in transversely isotropic elastic materials. J Appl Mech 33(2):347–355

    Article  MATH  Google Scholar 

  6. Ding H, Chen W, Zhang L (2006) Elasticity of transversely isotropic materials. Springer, Dordrecht

    MATH  Google Scholar 

  7. Ding HJ, Xu BH (1988) General solutions of axisymmetric problems in transversely isotropic body. Appl Math Mech 9:135–142 (in Chinese)

    Article  MathSciNet  Google Scholar 

  8. D’Urso MG (2012) New expressions of the gravitational potential and its derivates for the prism. In: Sneeuw N, Novák P, Crespi M, Sansò F (eds) VII Hotine-Marussi International Symposium on Mathematical Geodesy. Springer, Berlin, pp 251–256

    Chapter  Google Scholar 

  9. D’Urso MG (2013) On the evaluation of the gravity effects of polyhedral bodies and a consistent treatment of related singularities. J Geodesy 87(3):239–252

    Article  ADS  Google Scholar 

  10. D’Urso MG (2014) Analytical computation of gravity effects for polyhedral bodies. J Geodesy 88:13–29

    Article  ADS  Google Scholar 

  11. D’Urso MG (2014) Gravity effects of polyhedral bodies with linearly varying density. Celest Mech Dyn Astron 120(4):349–372

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. D’Urso MG (2015) Some Remarks on the Computation of the Gravitational Potential of Masses with Linearly Varying Density. In: Sneeuw N, Novák P, Crespi M, Sansò F (eds) VIII Hotine-Marussi Symposium. Rome

  13. D’Urso MG (2015) The gravity anomaly of a 2D polygonal body having density contrast given by polynomial functions. Surv Geophys 36(3):391–425

    Article  ADS  Google Scholar 

  14. D’Urso MG, Marmo F (2009) Vertical stresses due to linearly distributed pressures over polygonal domains. In: ComGeo I, First International Symposium on Computational Geomechanics. Juan les Pins, France, pp 283–289

  15. D’Urso MG, Marmo F (2013) On a generalized Love’s problem. Comput Geosci 61:144–151

    Article  ADS  Google Scholar 

  16. D’Urso MG, Marmo F (2015) Vertical stress distribution in isotropic half-spaces due to surface vertical loadings acting over polygonal domains. Zeitschrift für Angewandte Mathematik und Mechanik 95(1):91–110

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. D’Urso MG, Russo P (2002) A new algorithm for point-in polygon test. Surv Rev 36(284):410–422

    Article  Google Scholar 

  18. Elliott HA (1948) Three-dimensional stress distributions in hexagonal aeolotropic crystals. Math Proc Cambr Philos Soc 44:522–533

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Eskandari M, Shodja HM (2010) Green’s functions of an exponentially graded transversely isotropic half-space. Int J Solids Struct 47:1537–1545

    Article  MATH  Google Scholar 

  20. Eubanks RA, Sternberg E (1954) On the axisymmetric problem of elasticity theory for a medium with transverse isotropy. J Ration Mech Anal 47:1537–1545

    MathSciNet  MATH  Google Scholar 

  21. Gerrard C, Wardle L (1973) Solutions for point loads and generalized circular loads applied to a cross anisotropic halfspace. Tech. Rep. 13, CSIRO (Commonwealth Scientific and Industrial Research Organization) Australia, Division of Applied Geomechanics, Sydney, Australia

  22. Hu H (1953) On the three-dimensional problems of the theory of elasticity of a transversely isotropic body. Acta Phys Sin 9(2):130–148

    MathSciNet  MATH  Google Scholar 

  23. Kalantari M, Khojasteh A, Mohammadnezhad H, Rahimian M, Pak R (2015) An inextensible membrane at the interface of a transversely isotropic bi-material full-space. Int J Eng Sci 91:34–48

    Article  MathSciNet  Google Scholar 

  24. Koning H (1957) Stress distribution in a homogenous, anisotropic, elastic semi-infinite solid. In: 4th international conference on soil mechanics and foundation engineering. Butterworths, London, pp 335–338

  25. Kuzkin V, Kachanov M (2015) Contact of rough surfaces: conductance-stiffness connection for contacting transversely isotropic half-spaces. Int J Eng Sci 97:1–5

    Article  MathSciNet  Google Scholar 

  26. Lekhniskii SG (1981) Theory of elasticity of an anisotropic body. MIR Publishers, Moscow

    Google Scholar 

  27. Liao J, Wang C (1998) Elastic solutions for a transversely isotropic half-space subjected to a point load. Int. J. Numer. Anal. Meth. Geomech. 22:425–447

    Article  MATH  Google Scholar 

  28. Lin W, Kuo CH, Keer LM (1991) Analysis of a transversely isotropic half space under normal and tangential loadings. ASME J Tribol 113:335–338

    Article  Google Scholar 

  29. Lodge AS (1955) The transformation to isotropic form of the equilibrium equations for a class of anisotropic elastic solids. Q J Mech Appl Mech 8:211–225

    Article  MathSciNet  MATH  Google Scholar 

  30. Marmo F, Rosati L (2016) A general approach to the solution of Boussinesq’s problem for polynomial pressures acting over polygonal domains. J Elast 122:75–112

    Article  MathSciNet  MATH  Google Scholar 

  31. Marmo F, Sessa S, Rosati L (2016) Analytical solution of the Cerruti problem under linearly distributed horizontal pressures over polygonal domains. J Elast 124:27–56

    Article  MathSciNet  MATH  Google Scholar 

  32. Michell JH (1900) Some elementary distributions of stress in three-dimensions. Proc Lond Math Soc 32:23–35

    Article  MathSciNet  MATH  Google Scholar 

  33. Nowacki W (1954) The stress function in three-dimensional problems concerning an elastic body characterized by transverse isotropy. Bull Polish Acad Sci 4(2):21–25

    Google Scholar 

  34. Okumura IA (1987) Generalization of Elliott’s solution to transversely isotropic solids and its application. Proc Jpn Soc Civ Eng 386:185–195

    Google Scholar 

  35. Pan E, Chen W (2015) Static Green’s function in anisotropic media. Cambridge Press, Cambridge

    MATH  Google Scholar 

  36. Pan Y, Chou T (1976) Point force solution for an infinite transversely isotropic solid. J Appl Mech 43(4):608–612

    Article  MATH  Google Scholar 

  37. Pan Y, Chou T (1979) Green’s function solutions for semi-infinite transversely isotropic materials. Int J Eng Sci 17:545–551

    Article  Google Scholar 

  38. Rosati L, Marmo F (2014) A closed form expression of the thermo-mechanical fields induced by a uniform heat source acting over an isotropic half-space. Int J Heat Mass Transf 75:272–283

    Article  Google Scholar 

  39. Selvadurai APS, Nikopour H (2012) Transverse elasticity properties of a unidirectionally reinforced composite with a random fibre arrangement. Compos Struct 94:1973–1981

    Article  Google Scholar 

  40. Sessa S, D’Urso MG (2013) Employment of Bayesian networks for risk assessment of excavation processes in dense urban areas. In: 11th International Conference of Structural Safety and Reliability. ICOSSAR, New York, pp 3163–3169

  41. Shield RT (1951) Notes on problems in hexagonal aeolotropic materials. Math Proc Camb Philos Soc 47:401–409

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Tang KT (2006) Mathematical methods for engineers and scientists. Springer, Berlin

    Google Scholar 

  43. Ting TCT (1996) Anisotropic elasticity: theory and applications. Oxford University Press, Oxford

    MATH  Google Scholar 

  44. Toraldo F (2015) Elastic solutions for transversely isotropic half-spaces subject to vertical pressures. Ph.D. thesis, University of Naples, Federico II, Naples (in Italian)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Marmo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marmo, F., Toraldo, F. & Rosati, L. Analytical formulas and design charts for transversely isotropic half-spaces subject to linearly distributed pressures. Meccanica 51, 2909–2928 (2016). https://doi.org/10.1007/s11012-016-0443-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0443-x

Keywords

Navigation