Skip to main content
Log in

Intraventricular thrombus formation in the LVAD-assisted heart studied in a mock circulatory loop

  • Advances in Biomechanics: From Foundations to Applications
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Left ventricular assist devices (LVADs) are mechanical pumps that are surgically attached to the left ventricle and aorta. Clinical studies show that LVADs improve patient health and quality of life, and dramatically reduce the mortality of cardiac failure. During periods of high LVAD support, blood flow occurs entirely through the LVAD, the aortic valve is continuously closed, and the heart operates in series with the pump. Thus the normal fluid dynamics of intraventricular flow are altered and linked to the development of thrombus in both the native heart and LVAD. Our goal in this study was to simulate a patient with a recurring thrombus and quantify the variations in the flow field in the LV as the thrombus developed. Particle image velocimetry measurements of transparent silicone models were performed for a range of LVAD support conditions. Results show that the presence of a small thrombus in the LVOT creates a favorable condition for further growth, especially in the presence of high LVAD support. As the thrombus enlarges, it begins to affect the normal vortex-flow pattern, further reducing flow rate and pulsatility in the LVOT. Evaluation of vortex dynamics and stasis regions in both patients and experimental models of LVAD support yield quantitative metrics that can be used to assess the risk of thrombus and the development of strategies to reduce this risk in LVAD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AoP:

Aortic pressure

AVO:

Aortic valve opening

BTR:

Bridge-to-recovery

BTT:

Bridge-to-transplant

CCW:

Counter clockwise

CO:

Cardiac output

CS:

Cardiac simulator

CW:

Clockwise

DT:

Destination therapy

EEP:

Energy equivalent pressure

HF:

Heart failure

HMII:

HeartMate II LVAD

KE:

Kinetic energy

LAP:

Left atrial pressure

LV:

Left ventricle

LVAD:

Left ventricular assist device

LVOT:

Left ventricular outflow tract

LVP:

Left ventricular pressure

MAP:

Mean arterial pressure

PI:

Pulsatility index, defined as (max–min)/mean flow or velocity

PP:

Pulse pressure

PIV:

Particle image velocimetry

Q-LVAD:

LVAD flow rate

Q-total:

Total aortic flow

SHE:

Surplus hemodynamic energy

Te:

Thromboembolism

References

  1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB (2013) Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation 127(1):e6–e245

    Article  Google Scholar 

  2. Murphy J, Lloyd M (eds) (2012) Mayo Clinic cardiology: concise textbook, 4th edn. Mayo Clinic Scientific Press, Rochester

    Google Scholar 

  3. Lietz K, Long JW, Kfoury AG, Slaughter MS, Silver MA, Milano CA, Rogers JG, Naka Y, Mancini D, Miller LW (2007) Outcomes of left ventricular assist device implantation as destination therapy in the post-REMATCH era: implications for patient selection. Circulation 116(5):497–505

    Article  Google Scholar 

  4. Mehra MR, Stewart GC, Uber PA (2014) The vexing problem of thrombosis in long-term mechanical circulatory support. J Heart Lung Transplant 33(1):1–11

    Article  Google Scholar 

  5. Rose EA, Gekijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW (2001) Long-term mechanical left ventricular assistance for end-stage heart failure. N Engl J Med 345(20):1435–1443

    Article  Google Scholar 

  6. Slaughter MS, Pagani FD, Rogers JG, Miller LW, Sun B, Russell SD, Starling RC, Chen L, Boyle AJ, Chillcott S, Adamson RM, Blood MS, Camacho MT, Idrissi KA, Petty M, Sobieski M, Wright S, Myers TJ, Farrar DJ (2010) Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. J Heart Lung Transplant 29(4 Suppl.):S1–39

    Article  Google Scholar 

  7. Petrucci RJ, Rogers JG, Blue L, Gallagher C, Russell SD, Dordunoo D, Jaski BE, Chillcott S, Sun B, Yanssens TL, Tatooles A, Koundakjian L, Farrar DJ, Slaughter MS (2012) Neurocognitive function in destination therapy patients receiving continuous-flow vs pulsatile-flow left ventricular assist device support. J Heart Lung Transplant 31(1):27–36

    Article  Google Scholar 

  8. Harvey L, Holley CT, John R (2014) Gastrointestinal bleed after left ventricular assist device implantation: incidence, management, and prevention. Ann Cardiothorac Surg 3(5):475–479

    Google Scholar 

  9. Lopilato AC, Doligalski CT, Caldeira C (2015) Incidence and risk factor analysis for gastrointestinal bleeding and pump thrombosis in left ventricular assist device recipients. Artif Organs 39(11):939–944

    Article  Google Scholar 

  10. Whitson BA, Eckman P, Kamdar F, Lacey A, Shumway SJ, Liao KK, John R (2014) Hemolysis, pump thrombus, and neurologic events in continuous-flow left ventricular assist device recipients. Ann Thorac Surg 97(6):2097–2103

    Article  Google Scholar 

  11. Kirklin JK, Naftel DC, Kormos RL, Pagani FD, Myers SL, Stevenson LW, Acker MA, Goldstein DL, Silvestry SC, Milano CA, Baldwin JT, Pinney S, Rame JE, Miller MA (2014) Interagency registry for mechanically assisted circulatory support (INTERMACS) analysis of pump thrombosis in the HeartMate II left ventricular assist device. J Heart Lung Transplant 33(1):12–22

    Article  Google Scholar 

  12. Bolger AF, Heiberg E, Karlsson M, Wigström L, Engvall J, Sigfridsson A, Ebbers T, Kvitting J-PE, Carlhäll CJ, Wranne B (2007) Transit of blood flow through the human left ventricle mapped by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 9(5):741–747

    Article  Google Scholar 

  13. Eriksson J, Carlhäll CJ, Dyverfeldt P, Engvall J, Bolger AF, Ebbers T (2010) Semi-automatic quantification of 4D left ventricular blood flow. J Cardiovasc Magn Reson 12:9

    Article  Google Scholar 

  14. Hendabadi S, Bermejo J, Benito Y, Yotti R, Fernandez-Aviles F, del Alamo JC, Shadden SC (2013) Topology of blood transport in the human left ventricle by novel processing of Doppler echocardiography. Ann Biomed Eng 41(12):2603–2616

    Article  Google Scholar 

  15. Kheradvar A, Houle H, Pedrizzetti G, Tonti G, Belcik T, Ashraf M, Lindner JR, Gharib M, Sahn D (2010) Echocardiographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern. J Am Soc Echocardiogr 23(1):86–94

    Article  Google Scholar 

  16. Kim WY, Walker PG, Pedersen EM, Poulsen JK, Oyre S, Houlind K, Yoganathan AP (1995) Left ventricular blood flow patterns in normal subjects: a quantitative analysis by three-dimensional magnetic resonance velocity mapping. J Am Coll Cardiol 26(1):224–238

    Article  Google Scholar 

  17. Hong G-R, Pedrizzetti G, Tonti G, Li P, Wei Z, Kim JK, Baweja A, Liu S, Chung N, Houle H, Narula J, Vannan MA (2008) Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry. JACC Cardiovasc Imaging 1(6):705–717

    Article  Google Scholar 

  18. Martinez-Legazpi P, Bermejo J, Benito Y, Yotti R, Perez Del Villar C, Gonzalez-Mansilla A, Barrio A, Villacorta E, Sanchez PL, Fernandez-Aviles F, del Alamo JC (2014) Contribution of the diastolic vortex ring to left ventricular filling. J Am Coll Cardiol 64(16):1711–1721

    Article  Google Scholar 

  19. Kheradvar A, Milano M, Gharib M (2007) Correlation between vortex ring formation and mitral annulus dynamics during ventricular rapid filling. ASAIO J 53(1):8–16

    Article  Google Scholar 

  20. Pedrizzetti G, Domenichini F (2005) Nature optimizes the swirling flow in the human left ventricle. Phys Rev Lett 95(10):1–4

    Article  Google Scholar 

  21. Watanabe H, Sugiura S, Hisada T (2008) The looped heart does not save energy by maintaining the momentum of blood flowing in the ventricle. Am J Physiol Heart Circ Physiol 294(5):H2191–H2196

    Article  Google Scholar 

  22. Loerakker S, Cox LGE, van Heijst GJF, de Mol BAJM, van de Vosse FN (2008) Influence of dilated cardiomyopathy and a left ventricular assist device on vortex dynamics in the left ventricle. Comput Methods Biomech Biomed Eng 11(6):649–660

    Article  Google Scholar 

  23. Bermejo J, Benito Y, Alhama M, Yotti R, Martinez-Legazpi P, Del Villar CP, Perez-David E, Gonzalez-Mansilla A, Santa-Marta C, Barrio A, Fernandez-Aviles F, Del Alamo JC (2014) Intraventricular vortex properties in nonischemic dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 306(5):H718–H729

    Article  Google Scholar 

  24. Faludi R, Szulik M, D’hooge J, Herijgers P, Rademakers F, Pedrizzetti G, Voigt J-U (2010) Left ventricular flow patterns in healthy subjects and patients with prosthetic mitral valves: an in vivo study using echocardiographic particle image velocimetry. J Thorac Cardiovasc Surg 139(6):1501–1510

    Article  Google Scholar 

  25. Fyrenius A, Wigström L, Ebbers T, Karlsson M, Engvall J, Bolger AF (2001) Three dimensional flow in the human left atrium. Heart 86(4):448–455

    Article  Google Scholar 

  26. Girdhar G, Xenos M, Alemu Y, Chiu W-C, Lynch BE, Jesty J, Einav S, Slepian MJ, Bluestein D (2012) Device thrombogenicity emulation: a novel method for optimizing mechanical circulatory support device thromboresistance. PLoS One 7(3):e32463

    Article  ADS  Google Scholar 

  27. Wong K, Samaroo G, Ling I, Dembitsky W, Adamson R, del Álamo JC, May-Newman K (2014) Intraventricular flow patterns and stasis in the LVAD-assisted heart. J Biomech 47(6):1485–1494

    Article  Google Scholar 

  28. Goswami KC, Yadav R (2004) Predictors of left atrial appendage clot: a transesophageal echocardiographic study of left atrial appendage function in patients with severe mitral stenosis. Indian Heart J 56(6):628–635

    Google Scholar 

  29. Bluestein D (2004) Research approaches for studying flow-induced thromboembolic complications in blood recirculating devices. Expert Rev Med Devices 1(1):65–80

    Article  Google Scholar 

  30. May-Newman K, Wong YK, Adamson R, Hoagland P, Vu V, Dembitsky W (2013) Thromboembolism is linked to intraventricular flow stasis in a patient supported with a left ventricle assist device. ASAIO J 59(4):452–455

    Article  Google Scholar 

  31. Thompson RB, McVeigh ER (2003) Fast measurement of intracardiac pressure differences with 2D breath-hold phase-contrast MRI. Magn Reson Med 49(6):1056–1066

    Article  Google Scholar 

  32. Yin FC, Liu ZR (1989) Estimating arterial resistance and compliance during transient conditions in humans. Am J Physiol 257:H190–H197

    Google Scholar 

  33. Maurer MM, Burkhoff D, Maybaum S, Franco V, Vittorio TJ, Williams P, White L, Kamalakkannan G, Myers J, Mancini DM (2009) A multicenter study of noninvasive cardiac output by bioreactance during symptom-limited exercise. J Card Fail 15(8):689–699

    Article  Google Scholar 

  34. Travis AR, Giridharan GA, Pantalos GM, Dowling RD, Prabhu SD, Slaughter MS, Sobieski M, Undar A, Farrar DJ, Koenig SC (2007) Vascular pulsatility in patients with a pulsatile- or continuous-flow ventricular assist device. J Thorac Cardiovasc Surg 133(2):517–524

    Article  Google Scholar 

  35. Wong K, Samaroo G, Ling I, Dembitsky W, Adamson R, del Alamo JC, May-Newman K (2014) Intraventricular flow patterns and stasis in the LVAD-assisted heart. J Biomech 47(6):1485–1494

    Article  Google Scholar 

  36. Garcia D, Juan JC, Tanné D, Yotti R, Cortina C, Bertrand É, Antoranz JC, Pérez-David E, Rieu R, Fernández-Avilés F, Bermejo J (2010) Two-dimensional intraventricular flow mapping by digital processing conventional color-doppler echocardiography images. IEEE Trans Med Imaging 29(10):1701–1713

    Article  Google Scholar 

  37. Tolpen S, Janmaat J, Reider C, Kallel F, Farrar D, May-Newman K (2015) Programmed speed reduction enables aortic valve opening and increased pulsatility in the LVAD-assisted heart. ASAIO J 61(5):540–547

    Article  Google Scholar 

  38. Moazami N, Dembitsky WP, Adamson R, Steffen RJ, Soltesz EG, Starling RC, Fukamachi K (2015) Does pulsatility matter in the era of continuous-flow blood pumps? J Heart Lung Transplant 34(8):999–1004

    Article  Google Scholar 

  39. Uriel N, Han J, Morrison KA, Nahumi N, Yuzefpolskaya M, Garan AR, Duong J, Colombo PC, Takayama H, Thomas S, Naka Y, Jorde UP (2014) Device thrombosis in HeartMate II continuous-flow left ventricular assist devices: a multifactorial phenomenon. J Heart Lung Transplant 33:51–59

    Article  Google Scholar 

  40. Saeed O, Maybaum S, D’Alessandro D, Goldstein DJ, Patel SR (2014) Aortic valve opening and thrombotic events with continuous-flow left ventricular assist devices. J Heart Lung Transplant: Off Publ Int Soc Heart Transplant 33(1):109–112

    Article  Google Scholar 

  41. Estep JD, Stainback RF, Little SH, Torre G, Zoghbi WA (2010) The role of echocardiography and other imaging modalities in patients with left ventricular assist devices. JACC Cardiovasc Imaging 3(10):1049–1064

    Article  Google Scholar 

  42. Ammar KA, Umland MM, Kramer C, Sulemanjee N, Jan MF, Khandheria BK, Seward JB, Paterick TE (2012) The ABCs of left ventricular assist device echocardiography: a systematic approach. Eur Heart J Cardiovasc Imaging 13(11):885–899

    Article  Google Scholar 

  43. Shah S, Mehra MR, Couper GS, Desai AS (2014) Continuous flow left ventricular assist device related aortic root thrombosis complicated by left main coronary artery occlusion. J Heart Lung Transplant 33(1):119–120

    Article  Google Scholar 

  44. Fried J, Levin AP, Mody KM, Garan AR, Yuzefpolsakaya M, Takayama H, Diuguid DL, Naka Y, Jorde U, Uriel N (2014) Prior hematologic conditions carry a high morbidity and mortality in patients supported with continuous-flow left ventricular assist devices. J Heart Lung Transplant 33(11):1119–1125

    Article  Google Scholar 

  45. Reul JT, Reul GJ, Frazier OH (2014) Carotid-bulb thrombus and continuous-flow left ventricular assist devices: a novel observation. J Heart Lung Transplant 33(1):107–109

    Article  Google Scholar 

  46. Soucy KG, Giridharan GA, Choi Y, Sobieski MA, Monreal G, Cheng A, Schumer E, Slaughter MS, Koenig SC (2015) Rotary pump speed modulation for generating pulsatile flow and phasic left ventricular volume unloading in a bovine model of chronic ischemic heart failure. J Heart Lung Transplant 34(1):122–131

    Article  Google Scholar 

  47. Choi S, Boston JR, Antaki JF (2007) Hemodynamic controller for left ventricular assist device based on pulsatility ratio. Artif Organs 31(2):114–125

    Article  Google Scholar 

Download references

Acknowledgments

The authors greatly appreciate the support of the Mechanical Circulatory Support Department as well as the Echocardiography unit (especially Jennifer Key) at Sharp Memorial Hospital. Funding was provided by the American Heart Association 14GRNT20530004 (PI: May-Newman).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen May-Newman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reider, C., Moon, J., Ramesh, V. et al. Intraventricular thrombus formation in the LVAD-assisted heart studied in a mock circulatory loop. Meccanica 52, 515–528 (2017). https://doi.org/10.1007/s11012-016-0433-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0433-z

Keywords

Navigation