Skip to main content
Log in

Determination of the accelerated RCF operating condition of the sun-planet contact of a tractor final drive using a computational method

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This study proposes a computational approach to determine the operating condition, under which the rolling contact fatigue (RCF) crack nucleation of the sun-planet mesh of a tractor final drive is accelerated. Although the experimental RCF time period can be reduced by increasing the rotational velocity, the resultant increase in the film thickness promotes the lubrication condition and thus lengthens the fatigue life. To counteract this fatigue performance variation, it is proposed to increase the lubricant temperature at the same time. In the process, the lubricant viscosity decreases and offsets lubrication film thickness increase introduced by the rotational velocity increase. A physics-based gear contact fatigue model that includes the descriptions of the mixed elastohydrodynamic lubrication, the multi-axial stresses and the multi-axial fatigue is used to quantify the impacts of the lubricant temperature and the rotational velocity on the crack formation, allowing the fine tune of the temperature and velocity parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Li S, Kahraman A (2011) A fatigue model for contacts under mixed elastohydrodynamic lubrication condition. Int J Fatigue 33(3):427–436

    Article  Google Scholar 

  2. Li S, Kahraman A, Klein M (2012) A fatigue model for spur gear contacts operating under mixed elastohydrodynamic lubrication conditions. ASME J Mech Des 134(4):041007

    Article  Google Scholar 

  3. Li S, Kahraman A (2013) Micro-pitting fatigue lives of lubricated point contacts: experiments and model validation. Int J Fatigue 48:9–18

    Article  Google Scholar 

  4. Li S, Kahraman A (2013) A physics-based model to predict micro-pitting lives of lubricated point contacts. Int J Fatigue 47:205–215

    Article  Google Scholar 

  5. Li S, Kahraman A (2014) A micro-pitting model for spur gear contacts. Int J Fatigue 59:224–233

    Article  Google Scholar 

  6. Li S (2015) An investigation on the influence of misalignment on micro-pitting of a spur gear pair. Tribol Lett 60(3):35

    Article  Google Scholar 

  7. Evans HP, Snidle RW, Sharif KJ, Shaw BA, Zhang J (2013) Analysis of micro-elastohydrodynamic lubrication and prediction of surface fatigue damage in micropitting tests on helical gears. ASME J Tribol 135:011501

    Article  Google Scholar 

  8. Bower A (1988) The influence of crack face friction and trapped fluid on surface initiated rolling contact fatigue cracks. ASME J Tribol 110(4):704–711

    Article  Google Scholar 

  9. Rico JEF, Battez H, Cuervo DG (2003) Rolling contact fatigue in lubricated contacts. Tribol Int 36:35–40

    Article  Google Scholar 

  10. Fajdiga G, Glodez S, Kramar J (2007) Pitting formation due to surface and subsurface initiated fatigue crack growth in contacting mechanical elements. Wear 262:1217–1224

    Article  Google Scholar 

  11. Li S, Kahraman A (2009) A mixed EHL model with asymmetric integrated control volume discretization. Tribol Int 42(8):1163–1172

    Article  Google Scholar 

  12. Li S (2015) A thermal tribo-dynamic mechanical power loss model for spur gear pairs. Tribol Int 88:170–178

    Article  Google Scholar 

  13. Ekberg A (2001) Anisotropy and rolling contact fatigue of railway wheels. Int J Fract 23(1):29–43

    Google Scholar 

  14. Hoffmann G, Hanejko FG, Slattery RH (2006) Crack initiation and propagation in RCF, a new approach to understanding pitting failure of highly loaded gears. SAE World Congress, Detroit

    Book  Google Scholar 

  15. Webster MN, Norbart CJJ (1995) An experimental investigation of micropitting using a roller disk machine. Tribol Trans 38(4):883–893

    Article  Google Scholar 

  16. Ariura Y, Ueno T, Nakanishi T (1983) An investigation of surface failure of surface-hardened gears by scanning electron microscopy observations. Wear 87:305–316

    Article  Google Scholar 

  17. Cheng W, Cheng HS (1995) Effect of surface roughness orientation on pitting resistance of lubricated rollers. Tribol Trans 38(2):396–402

    Article  Google Scholar 

  18. Ahlroos T, Ronkainen H, Helle A, Parikka R, Virta J, Varjus S (2009) Twin disc micropitting tests. Tribol Int 42(10):1460–1466

    Article  Google Scholar 

  19. Li S (2015) A computational study on the influence of surface roughness lay directionality on micropitting of lubricated point contacts. ASME J Tribol 137(2):021401

    Article  Google Scholar 

  20. Winter H, Weiss T (1981) Some factors influencing the pitting, micro-pitting (frosted areas) and slow speed wear of surface hardened gears. J Mech Des 103(2):499–505

    Article  Google Scholar 

  21. Oila A, Bull SJ (2005) Assessment of the factors influencing micropitting in rolling/sliding contacts. Wear 258(10):1510–1524

    Article  Google Scholar 

  22. Brechot P, Cardis AB, Murphy WR, Theissen J (2000) Micropitting resistant industrial gear oils with balanced performance. Ind Lubr Tribol 52(3):125–136

    Article  Google Scholar 

  23. Lainé E, Olver AV, Beveridge TA (2008) Effect of lubricants on micropitting and wear. Tribol Int 41(11):1049–1055

    Article  Google Scholar 

  24. Ringsberg JW, Loo-Morrey M, Josefson BL, Kapoor A, Beynon JH (2000) Prediction of fatigue crack initiation for rolling contact fatigue. Int J Fatigue 22(3):205–215

    Article  Google Scholar 

  25. Šraml M, Flašker J, Potrč I (2003) Numerical procedure for predicting the rolling contact fatigue crack initiation. Int J Fatigue 25(7):585–595

    Article  MATH  Google Scholar 

  26. Davoli P, Bernasconi A, Carnevali L (2003) Application of multiaxial criteria to contact fatigue assessment of spur gears. In: Proceedings of ASME design engineering technical conferences and computers and information in engineering conference, September 2003, Chicago, Illinois, USA. DETC2003/PTG-48001

  27. Snidle RW, Evans HP (2010) Mixed lubrication and prediction of surface fatigue in gear tooth contacts. In: Proceedings of international conference on gears, Technical University of Munich, October 2010, VDI-Berichte, Dusseldorf, Germany. VDI-Berichte No. 2108

  28. Epstein D, Keer LM, Wang QJ, Cheng HS, Zhu D (2003) Effect of surface topography on contact fatigue in mixed lubrication. Tribol Trans 46(4):506–513

    Article  Google Scholar 

  29. Zhu D, Ren N, Wang QJ (2009) Pitting life prediction based on a 3D line contact mixed EHL analysis and subsurface von Mises stress calculation. J Tribol 131(4):041501

    Article  Google Scholar 

  30. Li S, Kahraman A (2010) A transient mixed elastohydrodynamic lubrication model for spur gear pairs. ASME J Tribol 132(1):011501

    Article  Google Scholar 

  31. Li S, Kahraman A (2010) Prediction of spur gear mechanical power losses using a transient elastohydrodynamic lubrication model. Tribol Trans 53(4):554–563

    Article  Google Scholar 

  32. Wang Y, Hadfield M (1999) Rolling contact fatigue failure modes of lubricated silicon nitride in relation to ring crack defects. Wear 225–229(2):1284–1292

    Article  Google Scholar 

  33. Li S, Kahraman A (2011) Influence of dynamic behavior on elastohydrodynamic lubrication of spur gears. J Eng Tribol 225(8):740–753

    Google Scholar 

  34. Li S, Kahraman A (2011) A spur gear mesh interface damping model based on elastohydrodynamic contact behavior. Int J Powertrains 1(1):4–21

    Article  Google Scholar 

  35. Li S, Kahraman A (2013) A tribo-dynamic model of a spur gear pair. J Sound Vib 332:4963–4978

    Article  ADS  Google Scholar 

  36. Li S, Kahraman A, Anderson NE, Wedeven LD (2013) A model to predict scuffing failures of a ball-on-disk contact. Tribol Int 60:233–245

    Article  Google Scholar 

  37. Li S (2013) Influence of surface roughness lay directionality on scuffing failure of lubricated point contacts. ASME J Tribol 135(4):041502

    Article  Google Scholar 

  38. Hu YZ, Zhu D (2000) A full numerical solution to the mixed lubrication in point contacts. ASME J Tribol 122:1–9

    Article  Google Scholar 

  39. Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  40. Li S (2014) A boundary element model for near surface contact stresses of rough surfaces. Comput Mech 54(3):833–846

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Liu Y, Mahadevan S (2007) A unified multiaxial fatigue damage model for isotropic and anisotropic materials. Int J Fatigue 29:347–359

    Article  MATH  Google Scholar 

  42. Kahraman A, Ligata H, Kienzle K, Zini DM (2004) A kinematics and power flow analysis methodology for automatic transmission planetary gear trains. ASME J Mech Des 126:1071–1081

    Article  Google Scholar 

  43. Bair S, Qureshi F (2002) Accurate measurements of pressure-viscosity behavior in lubricants. Tribol Trans 45(3):390–396

    Article  Google Scholar 

  44. LDP, Gear Load Distribution Program (2012) Gear and power transmission research laboratory. The Ohio State University, Columbus

    Google Scholar 

  45. Ferguson S, Johnson J, Gonzales D, Hobbs C, Allen C, Williams S (2015) Analysis of ZDDP content and thermal decomposition in motor oils using NAA and NMR. Phys Procedia 66:439–444

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Wagner, J.J. Determination of the accelerated RCF operating condition of the sun-planet contact of a tractor final drive using a computational method. Meccanica 52, 431–440 (2017). https://doi.org/10.1007/s11012-016-0401-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0401-7

Keywords

Navigation