Skip to main content

Advertisement

Log in

A three-degree-of-freedom model for vortex-induced vibrations of turbine blades

  • Nonlinear Dynamics, Identification and Monitoring of Structures
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

A new three-degree-of-freedom model simulating vortex-induced vibrations (VIVs) of turbine blades is proposed. Equations of motions include the coupling for bending and torsion of a blade as well as the fluid-blade interactions, which is described by a van der Pol oscillator. The 1:1 internal resonance analysis is carried out with the multiple scale method, and modulation equations are derived. Bifurcation curves for responses with respect to the detuning parameter and dimensionless freestream velocity are obtained. Effects of the system parameters including the lift and moment coefficients, structural damping, cubic nonlinearity and coupling parameters on the responses are investigated. It is found that dynamic behaviours such as the saddle-node and Hopf bifurcations can occur for certain values of the system parameters. The approximate solutions obtained by the multiple scale method are validated by a direct numerical simulation. The results indicate that the proposed three-degree-of-freedom model can be useful to explain the dynamic response characteristics of blades and to optimize the blade design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Lau YL, Leung RCK, So RMC (2007) Vortex-induced vibration effect on fatigue life estimate of turbine blades. J Sound Vib 307:698–719

    Article  ADS  Google Scholar 

  2. Hu GT, Du L, Zhong GH, Sun XF (2011) A numerical modeling of the vortex-induced vibration of cascade in turbomachinery using immersed boundary method. J Therm Sci 20(3):229–237

    Article  Google Scholar 

  3. Gostelow JP, Platzer MF, Carscallen WE (2006) On vortex formation in the wake flows of transonic turbine blades and oscillating airfoils. Trans ASME 128:528–535

    Google Scholar 

  4. Baik YS, Bernal LP, Granlund K, Ol MV (2012) Unsteady force generation and vortex dynamics of pitching and plunging aerofoils. J Fluid Mech 709:37–68

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Lawaczeck O, Heineman HJ (1975) Von Kármán vortex street in the wake of subsonic and transonic blades, AGARD-CP-177, Unsteady Phenomena in Turbomachinery, pp 28

  6. Barron MA, Sen M (2009) Synchronization of coupled self-excited elastic beams. J Sound Vib 324:209–220

    Article  ADS  Google Scholar 

  7. Bishop RED, Hassan AY (1964) The lift and drag forces on a circled cylinder in a flowing fluid. Proc R Soc A Math Phys 277:32–50

    Article  ADS  Google Scholar 

  8. Facchinetti ML, de Langre E, Biolley F (2004) Coupling of structure and wake oscillators in vortex-induced vibrations. J Fluids Struct 19:123–140

    Article  Google Scholar 

  9. Barron MA (2010) Vibration analysis of a self-excited elastic beam. J Appl Res Technol 8(2):227–239

    ADS  MathSciNet  Google Scholar 

  10. Nayfeh AH (1993) Introduction to perturbation techniques. Wiley, New York

    MATH  Google Scholar 

  11. Keber M, Wiercigroch M (2008) A reduced order model for vortex-induced vibration of a vertical offshore riser in lock-in. In: Proceedings of the IUTAM symposium on fluid–structure interactions in ocean engineering, pp 1–12

  12. Nishi Y (2013) Power extraction from vortex-induced vibration of dual mass system. J Sound Vib 332:199–212

    Article  ADS  Google Scholar 

  13. Hartlen RT, Currie IG (1970) Lift-oscillator model of vortex induced vibration. J Eng Mech ASME 96:577–591

    Google Scholar 

  14. Landl R (1975) A mathematical model for vortex induced vibration of bluff bodies. J Sound Vib 42:219–234

    Article  ADS  Google Scholar 

  15. Tamura Y, Matsui G (1979) Wake-oscillator model of vortex-induced oscillation of circular cylinder. In: Proceedings of the fifth international conference on wind engineering, CO, USA, pp 1085–1094

  16. Gabbai RD, Benayoya H (2005) An overview of modeling and experiments of vortex-induced vibration of circularcy linders. J Sound Vib 282:575–616

    Article  ADS  Google Scholar 

  17. Nishi Y, Kokubun K, Hoshino K et al (2009) Quasisteady theory for the hydrodynamic forces on a circular cylinder undergoing vortex-induced vibration. J Mar Sci Technol Jpn 14(3):285–295

    Article  Google Scholar 

  18. Disilvio G (1969) Self-controlled vibration of cylinder in fluid stream. J Eng Mech Div 95:347–361

    Google Scholar 

  19. Violette R, de Langre E, Szydlowski J (2007) Computation of vortex-induced vibrations of long structures using a wake oscillator model: comparison with DNS and experiments. Comput Struct 85:1134–1141

    Article  Google Scholar 

  20. Xu VH, Zeng ZH, Wu YX (2008) High aspect ratio (L/D) riser VIV prediction using wake oscillator model. Ocean Eng 35:1769–1774

    Article  Google Scholar 

  21. Jadic I, So RMC, Mignolet MP (1998) Analysis of fluid–structure interactions using a time-maeching technique. J Fluid Struct 12:631–654

    Article  Google Scholar 

  22. Gnesin V, Rzaidkowski R (2002) A coupled fluid–structure analysis for 3-D inviscid flutter of IV stand configuration. J Sound Vib 251(2):315–327

    Article  ADS  Google Scholar 

  23. Sabuncu M, Evran K (2006) The dynamic stability of a rotating pre-twisted asymmetric cross-section Timoshenko beam subjected to lateral parametric excitation. Int J Mech Sci 48:878–888

    Article  MATH  Google Scholar 

  24. Witteveen JAS, Sarkar S, Bijl H (2007) Modeling physical uncertainties in dynamic stall induced fluid–structure interaction of turbine blades using arbitrary polynomial chaos. Comput Struct 85:866–878

    Article  Google Scholar 

  25. Beauseroy P, Lengellé R (2007) Nonintrusive turbomachine blade vibration measurement system. Mech Syst Signal Process 21:1717–1738

    Article  ADS  Google Scholar 

  26. Helfrick MN, Pingle P, Niezrecki C, Avitabile P (2009) Optical non-contacting vibration measurement of rotating turbine blades. In: Proceedings of the IMAC-XXVII, Society for Experimental Mechanics Inc, Orlando, FL

  27. Luk KF, So RMC, Leung RCK, Lau YL, Kot SC (2004) Aerodynamic and structural resonance of an elastic airfoil due to oncoming vortices. AIAA J 42(5):899–907

    Article  ADS  Google Scholar 

  28. Fleeter S, Jay RL, Bennett WA (1981) Wake induced time-variant aerodynamics including rotor–stator axial spacing effects. J Fluid Eng Trans ASME 103:59–66

    Article  Google Scholar 

  29. Sanders AJ, Fleeter S (2000) Experimental investigation of rotor-inlet guide vane interactions in transonic axial-flow compressor. J Propul Power 16:421–430

    Article  Google Scholar 

  30. Lee BHK, Jiang LY, Wong YS (1999) Flutter of an airfoil with a cubic restoring force. J Fluids Struct 13:75–101

    Article  Google Scholar 

  31. Liu L, Wong YS, Lee BHK (2000) Application of the center manifold theory in nonlinear aeroelasticity. J Sound Vib 234:641–659

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Chung KW, Chan CL, Lee BHK (2007) Bifurcation analysis of a two-degree-of-freedom aeroelastic system with freeplay structural nonlinearity by a perturbation-incremental method. J Sound Vib 299:520–539

    Article  ADS  Google Scholar 

  33. Chung KW, He YB, Lee BHK (2009) Bifurcation analysis of a two-degree-of-freedom aeroelastic system with hysteresis structural nonlinearity by a perturbation-incremental method. J Sound Vib 320:163–183

    Article  ADS  Google Scholar 

  34. Wang D, Chen YS, Cao QJ, Xiong YP (2014) Dynamical analysis of a two dimensional turbomachine bladewith the coupling of bending and torsion. Chin J Vib Shock 33(7):199–205

    Google Scholar 

  35. Jones KD, Dohring CM, Platzer MF (1998) Experimental and computational investigation of the Knoller–Betz effect. AIAA J 36(7):1240–1246

    Article  ADS  Google Scholar 

  36. Kadlec RA, Davis SS (1996) Visualization of quasi-periodic flows. AIAA J 17(11):1164–1169

    ADS  Google Scholar 

  37. Ohashi H, Ishikawa N (1972) Visualization study of a flow near the trailing edge of an oscillating airfoil. Bull JSME 15:840–845

    Article  Google Scholar 

  38. Koochesfahani MM (1989) Vortical patterns in the wake of an oscillating airfoil. AIAA J 27(9):1200–1205

    Article  ADS  Google Scholar 

  39. Young J, Lai JCS (2004) Oscillation frequency and amplitude effects on the wake of a plunging airfoil. AIAA J 42(10):2042–2052

    Article  ADS  Google Scholar 

  40. Milne Thomson LM (1968) Theoretical hydrodynamics, 4th edn. Macmillan, New York, pp 224–227

    Book  MATH  Google Scholar 

  41. Cicatelli G, Sieverding CH (1997) The effects of vortex shedding on the unsteady pressure distribution around the trailing edge of a turbine blade. J Turbomach ASME 119(4):810–819

    Article  Google Scholar 

  42. Sieverding CH, Cicatelli G, Desse J-M, Meinke M, Zunino P (1999) Experimental and numerical investigation of time varying wakes behind turbine blades, Notes on Numerical Fluid Mechanics, vol 67. Vieweg, Braunschweig

    Google Scholar 

  43. Ubaldi M, Zunino P (2000) An experimental study of the unsteady characteristics of the turbulent wake of a turbine blade. Exp Therm Fluids Sci 23:23–33

    Article  Google Scholar 

  44. Sieverding CH, Richard H, Desse J-M (2003) Turbine blade trailing edge flow characteristics at high subsonic outlet Mach number. J Turbomach ASME 125(2):298–309

    Article  Google Scholar 

  45. Sieverding CH, Ottolia D, Bagnera C, Comadoro A, Brouckaert J-F, Desse J-M (2004) Unsteady turbine blade wake characteristics. J Turbomach ASME 126:551–559

    Article  Google Scholar 

  46. Simoni D, Ubaldi M, Zunino P (2008) Von Karman vortices formation at the trailing edge of a turbine blade. WSEAS Trans Fluids Mech 3(4):349–358

    Google Scholar 

  47. Li P, Yang Y, Lu L (2014) Nonlinear flutter behavior of a plate with motion constraints in subsonic flow. Meccanica 49:2797–2815

    Article  MathSciNet  MATH  Google Scholar 

  48. Han G, Chen YS, Wang XD (2015) Flutter analysis of bending-torsion coupling of aero-engine compressor blade with assembled clearance. Appl Math Model 39(9):2539–2553

    Article  MathSciNet  Google Scholar 

  49. Blevins RD (1990) Flow-induced vibrations. Van Nostrand Reinhold, New York

    Google Scholar 

  50. Noack BR, Ohle F, Eckelman H (1991) On cell formation in vortex streets. J Fluid Mech 227:293–308

    Article  ADS  MATH  Google Scholar 

  51. Krenk S, Nielsen SRK (1999) Energy balanced double oscillator model for vortex-induced vibrations. J Eng Mech ASCE 125:263–271

    Article  Google Scholar 

  52. Hylton LD, Mihelc MS, Turner ER et al (1983) Analytical and experiment evaluation of the heat transfer distribution over the surface of turbine vane [R]. NASA Paper, Fluid Mechanics and Heat Transfer, No. CR-168015

  53. Hodson HP (1985) An inviscid blade-to-blade prediction of a wake-generated unsteady flow. J Eng Gas Turbines Power ASME 107:337–344

    Article  Google Scholar 

  54. Saiz G (2008) Turbomachinery aeroelasticity using a time-linearised multi blade-row approach. Ph.D. Thesis, Imperial College

  55. Nayfeh AH, Mook DT (1979) Nonlinear oscillations. Wiley, New York, pp 331–338

    MATH  Google Scholar 

  56. Arkhipova IM, Luongo A (2014) Stabilization via parametric excitation of multi-DOF statically unstable systems. Commun Nonlinear Sci Numer Simul 19:3913–3926

    Article  ADS  MathSciNet  Google Scholar 

  57. Schmidt G, Tondl A (1986) Nonlinear vibration. Cambrige University Press, Cambrige

    MATH  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Project 11372082 supported by National Natural Science Foundation of China, the project 2015CB057405 sponsored by the National Basic Research Program of China and the State Scholarship Fund of CSC. D.W. thanks for the hospitality of University of Aberdeen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Chen, Y., Wiercigroch, M. et al. A three-degree-of-freedom model for vortex-induced vibrations of turbine blades. Meccanica 51, 2607–2628 (2016). https://doi.org/10.1007/s11012-016-0381-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0381-7

Keywords

Navigation