Skip to main content
Log in

A pressure-based velocity decomposition procedure for the incompressible Navier–Stokes equations

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

An alternative formulation is presented for the incompressible form of the Navier–Stokes equations. This is done through the introduction of a new vector variable which represents the sum of the velocity vector and the pressure gradient vector. The introduction of the new variable modifies the continuity equation to a Poisson equation for pressure, with the forcing function on the right-hand side representing the divergence of the new vector variable. Hence, the proposed formulation utilizes pressure to satisfy the divergence-free condition on the differential level in a simple and straightforward manner. Moreover, with pressure introduced to the continuity equation on the differential level, the present formulation allows direct computation of the pressure and velocity fields from the continuity and momentum equations, respectively, and eliminates the need for computing pressure and velocity corrections to satisfy mass conservation as in SIMPLE-type pressure correction methods. The proposed procedure is numerically tested against several two-dimensional and three-dimensional steady flow problems. Discretization is carried out using a second-order accurate central difference scheme on a staggered grid and the discretized equations are solved in a segregated manner. Numerical results from the present formulation are in good agreement with conventional incompressible flow solvers and with experimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Patankar SV, Spalding DB (1972) A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int J Heat Mass Transf 15(10):1787–1806

    Article  MATH  Google Scholar 

  2. Patankar S (1980) Numerical heat transfer and fluid flow. CRC Press, Boca Raton

    MATH  Google Scholar 

  3. Chorin AJ (1968) Numerical solution of the Navier–Stokes equations. Math Comput 22(104):745–762

    Article  MathSciNet  MATH  Google Scholar 

  4. Temam R (1969) Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires (II). Arch Ration Mech Anal 33(5):377–385

    Article  MathSciNet  MATH  Google Scholar 

  5. Guermond JL, Minev P, Shen J (2006) An overview of projection methods for incompressible flows. Comput Methods Appl Mech Eng 195(44):6011–6045

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Chorin AJ (1967) A numerical method for solving incompressible viscous flow problems. J Comput Phys 2(1):12–26

    Article  ADS  MATH  Google Scholar 

  7. Turkel E (1987) Preconditioned methods for solving the incompressible and low speed compressible equations. J Comput Phys 72(2):277–298

    Article  ADS  MATH  Google Scholar 

  8. Kwak D, Kiris C, Kim CS (2005) Computational challenges of viscous incompressible flows. Comput Fluids 34(3):283–299

    Article  MATH  Google Scholar 

  9. Weinan E, Liu JG (2003) Gauge method for viscous incompressible flows. Commun Math Sci 1(2):317–332

    Article  MathSciNet  MATH  Google Scholar 

  10. Hafez M, Shatalov A, Wahba E (2006) Numerical simulations of incompressible aerodynamic flows using viscous/inviscid interaction procedures. Comput Methods Appl Mech Eng 195(23):3110–3127

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Edmund DO, Maki KJ, Beck RF (2013) A velocity-decomposition formulation for the incompressible Navier–Stokes equations. Comput Mech 52(3):669–680

    Article  MathSciNet  MATH  Google Scholar 

  12. Perić M, Kessler R, Scheuerer G (1988) Comparison of finite-volume numerical methods with staggered and colocated grids. Comput Fluids 16(4):389–403

    Article  ADS  MATH  Google Scholar 

  13. Rauwoens P, Vierendeels J, Merci B (2002) A solution for the odd–even decoupling problem in pressure-correction algorithms for variable density flows. J Comput Phys 227(1):79–99

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Johnston H, Liu JG (2002) Finite difference schemes for incompressible flow based on local pressure boundary conditions. J Comput Phys 180(1):120–154

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Wahba EM (2012) Steady flow simulations inside a driven cavity up to Reynolds number 35,000. Comput Fluids 66:85–97

    Article  MathSciNet  Google Scholar 

  16. Turkel E (1999) Preconditioning techniques in computational fluid dynamics. Annu Rev Fluid Mech 31(1):385–416

    Article  ADS  MathSciNet  Google Scholar 

  17. Ghia UKNG, Ghia KN, Shin CT (1982) High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J Comput Phys 48(3):387–411

    Article  ADS  MATH  Google Scholar 

  18. Beaudan P, Moin P (1994) Numerical experiments on the flow past a circular cylinder at sub-critical Reynolds number, (Report no. TF-62). Thermo-sciences Division, Stanford University, CA

  19. Coutanceau M, Bouard R (1977) Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow. J Fluid Mech 79(02):231–256

    Article  ADS  Google Scholar 

  20. Lanzerstorfer D, Kuhlmann HC (2012) Global stability of multiple solutions in plane sudden-expansion flow. J Fluid Mech 702:378–402

    Article  MathSciNet  MATH  Google Scholar 

  21. Battaglia F, Tavener SJ, Kulkarni AK, Merkle CL (1997) Bifurcation of low Reynolds number flows in symmetric channels. AIAA J 35(1):99–105

    Article  ADS  MATH  Google Scholar 

  22. Drikakis D (1997) Bifurcation phenomena in incompressible sudden expansion flows. Phys Fluids 9(1):76–87

    Article  ADS  Google Scholar 

  23. Wahba EM (2007) Iterative solvers and inflow boundary conditions for plane sudden expansion flows. Appl Math Model 31(11):2553–2563

    Article  MATH  Google Scholar 

  24. Albensoeder S, Kuhlmann HC (2005) Accurate three-dimensional lid-driven cavity flow. J Comput Phys 206(2):536–558

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Wahba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wahba, E.M. A pressure-based velocity decomposition procedure for the incompressible Navier–Stokes equations. Meccanica 51, 1675–1684 (2016). https://doi.org/10.1007/s11012-015-0326-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0326-6

Keywords

Navigation