Skip to main content
Log in

Analytical study of three-dimensional flexural vibration of micro-rotating shafts with eccentricity utilizing the strain gradient theory

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this work, some vibrational response parameters of strain gradient based micro-spinning Rayleigh beams with mass eccentricity distribution are investigated within infinitesimal deformation conditions. Governing equations of motion are derived utilizing the Hamilton’s principle. The gyroscopic effects and rotary inertia are both included in the formulation. By applying the Galerkin method, analytical expressions for natural frequencies of the micro beam in forward and backward whirl motions are obtained. In addition, an expression for the vibrational amplitude of the micro-beam due to mass eccentricity distribution is determined. Some numerical results are presented to study the effect of higher-order material properties on vibrational characteristics of micro-spinning beams with mass eccentricity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Senturia SD (2002) Mircosystem design. Kluwer Academic, London

    Google Scholar 

  2. Büttgenbach S, Burisch A, Hesselbach J (2011) Design and manufacturing of active microsystems. Springer, London

    Book  Google Scholar 

  3. Davim JP, Jackson MJ (2010) Nano and micromachining. Wiley, London

    Google Scholar 

  4. Epstein AH, Anathasuresh G, Ayon A et al (1997) Power MEMS and microengines. In: IEEE transducers ‘97 conference, Chicago, IL, USA

  5. Fréchette LG, Lee C, Arslan S et al (2003) Preliminary design of a MEMS steam turbine power plant-on-a-chip. In: 3rd int’l workshop on micro and nano technology for power generation and energy conversion (PowerMEMS’03), Makuhari, Japan, 2003

  6. Khanna R (2003) MEMS fabrication perspectives from the MIT Microengine Project. Surf Coat Technol 163–164:273–280

    Article  Google Scholar 

  7. Lang JH (2009) Multi-wafer rotating MEMS machines, turbines, generators, and engines. Springer, London

    Google Scholar 

  8. Schubert D (2012) Mems-concept using micro turbines for satellite power supply. Solar Power, InTech

  9. Stolken JS, Evans AG (1998) Microbend test method for measuring the plasticity length scale. J Acta Mater 46:5109–5115

    Article  Google Scholar 

  10. McFarland AW, Colton JS (2005) Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J Micromech Microeng 15:1060–1067

    Article  Google Scholar 

  11. Lam DCC, Yang F, Chong ACM et al (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51:1477–1508

    Article  ADS  MATH  Google Scholar 

  12. Bishop RED (1959) The vibration of rotating shafts. J Mech Eng Sci 1(1):50–65

    Article  MATH  Google Scholar 

  13. Capriz G (1967) Numerical method for evaluating the response of rotating shafts to excitation. Meccanica 2(4):213–217

    Article  Google Scholar 

  14. Curti G, Raffa FA, Vatta F (1992) An analytical approach to the dynamics of rotating shafts. Meccanica 27(4):285–292

    Article  ADS  Google Scholar 

  15. Kurnik W (1994) Stability and bifurcation analysis of a nonlinear transversally loaded rotating shaft. Nonlinear Dyn 5:39–52

    Google Scholar 

  16. Raffa FA, Vatta F (2001) Equations of motion of an asymmetric Timoshenko shaft. Meccanica 36(2):201–211

    Article  MATH  Google Scholar 

  17. Dimentberg MF (2005) Transverse vibrations of rotating shafts: probability density and first-passage time of whirl radius. Int J Nonlinear Mech 40:1263–1267

    Article  MATH  Google Scholar 

  18. Vatta F, Vigliani A (2007) Asymmetric rotating shafts: an alternative analytical approach. Meccanica 42(2):207–210

    Article  MATH  Google Scholar 

  19. Raffa FA, Vatta F (2007) Dynamic instability of axially loaded shafts in the Mathieu map. Meccanica 42(6):547–553

    Article  MATH  Google Scholar 

  20. Farshidianfar A, Soheili S (2009) Effects of rotary inertia and gyroscopic momentum on the flexural vibration of rotating shafts using hybrid modeling. Trans B Mech Eng Sharif Univ Technol 16(1):75–86

    Google Scholar 

  21. Shahgholi M, Khadem SE (2013) Resonances of an in-extensional asymmetrical spinning shaft with speed fluctuations. Meccanica 48(1):103–120

    Article  MathSciNet  MATH  Google Scholar 

  22. Khadem SE, Shahgholi M, Hosseini SAA (2011) Two-mode combination resonances of an in-extensional rotating shaft with large amplitude. Nonlinear Dyn 65:217–233

    Article  MathSciNet  MATH  Google Scholar 

  23. Shahgholi M, Khadem SE (2012) Primary and parametric resonances of asymmetrical rotating shafts with stretching nonlinearity. Mech Mach Theory 51:131–144

    Article  Google Scholar 

  24. Hosseini SAA, Zamanian M (2013) Multiple scales solution for free vibrations of a rotating shaft with stretching nonlinearity. Sci Iran 20:131–140

    Article  Google Scholar 

  25. Mindlin RD (1965) Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct 1:417–438

    Article  Google Scholar 

  26. Mindlin RD, Eshel NN (1968) On first strain-gradient theories in linear elasticity. Int J Solids Struct 4:109–124

    Article  MATH  Google Scholar 

  27. Kong S, Zhou S, Nie Z et al (2009) Static and dynamic analysis of micro beams based on strain gradient elasticity theory. Int J Eng Sci 47:487–498

    Article  MathSciNet  MATH  Google Scholar 

  28. Akgöz B, Civalek Ö (2011) Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams. Int J Eng Sci 49:1268–1280

    Article  MathSciNet  Google Scholar 

  29. Akgöz B, Civalek Ö (2012) Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory. Arch Appl Mech 82(3):423–443

    Article  MATH  Google Scholar 

  30. Wang B, Zhao J, Zhou S (2010) A microscale Timoshenko beam model based on strain gradient elasticity theory. Eur J Mech A/Solids 29:591–599

    Article  Google Scholar 

  31. Ansari R, Gholami R, Sahmani S (2011) Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory. Compos Struct 94:221–228

    Article  MATH  Google Scholar 

  32. Ansari R, Gholami R, Shojaei MF et al (2013) Size-dependent bending, buckling and free vibration of functionally graded Timoshenko microbeams based on the most general strain gradient theory. Compos Struct 100:385–397

    Article  Google Scholar 

  33. Asghari M, Kahrobaiyan MH, Nikfar M, Ahmadian MT (2012) A size-dependent nonlinear Timoshenko microbeam model based on the strain gradient theory. Acta Mech 223:1233–1249

    Article  MathSciNet  MATH  Google Scholar 

  34. Nayfeh AH, Pai PF (2004) Linear and nonlinear structural mechanics. Wiley-Interscience, New York

    Book  MATH  Google Scholar 

  35. Hosseini SAA, Khadem SE (2009) Free vibrations analysis of a rotating shaft with nonlinearities in curvature and inertia. Mech Mach Theory 44:272–288

    Article  MATH  Google Scholar 

  36. Genta G (1985) Consistent matrices in rotor dynamics. Meccanica 20:235–248

    Article  MATH  Google Scholar 

  37. Sheu GJ, Yang SM (2005) Dynamic analysis of a spinning Rayleigh beam. Int J Mechanical Sciences 47:157–169

    Article  MATH  Google Scholar 

  38. Shodja HM, Ahmadpoor F and Tehranchi A (2012) Calculation of the additional constants for fcc materials in second strain gradient elasticity: behavior of a nano-size Bernoulli–Euler beam with surface effects. J Appl Mech-T ASME 79(2):021008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Asghari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, M., Asghari, M. Analytical study of three-dimensional flexural vibration of micro-rotating shafts with eccentricity utilizing the strain gradient theory. Meccanica 51, 1435–1444 (2016). https://doi.org/10.1007/s11012-015-0302-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0302-1

Keywords

Navigation