Skip to main content
Log in

Preliminary design of a small-sized flapping UAV: I. Aerodynamic performance and static longitudinal stability

  • Published:
Meccanica Aims and scope Submit manuscript

An Erratum to this article was published on 07 November 2016

Abstract

The preliminary design of a biologically inspired flapping UAV is presented. Starting from a set of initial design specifications, namely: weight, maximum flapping frequency and minimum hand-launch velocity of the model, a parametric numerical study of the proposed avian model is conducted in terms of the aerodynamic performance and longitudinal static stability in gliding and flapping conditions. The model shape, size and flight conditions are chosen to approximate those of a gull. The wing kinematics is selected after conducting an extensive parametric study, starting from the simplest flapping pattern and progressively adding more degrees of freedom and control parameters until reaching a functional and realistic wing kinematics. The results give us an initial insight of the aerodynamic performance and longitudinal static stability of a biomimetic flapping UAV, designed at minimum flight velocity and maximum flapping frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. de Croon GC, Groen MA, De Wagter C, Remes B, Ruijsink R, van Oudheusden BW (2012) Design, aerodynamics and autonomy of the DelFly. Bioinspir Biomim 7:025003

    Article  ADS  Google Scholar 

  2. Prosser D, Basrai T, Dickert J, Ratti J, Crassidis A, Vachtsevanos G (2011) Wing kinematics and aerodynamics of a hovering flapping micro aerial vehicle. In: Aerospace conference, 2011 IEEE, pp 1–10, 5–12

  3. Lee JS, Kim DK, Lee JY, Han JH (2008) Experimental evaluation of a flapping wing aerodynamic model for MAV applications. In: SPIE 15th annual symposium smart Structures and material, pp 69282M/1–69282M/8

  4. Han JH, Lee JS, Kim DK (2009) Bio-inspired flapping UAV design: a university perspective. Proceedings of SPIE - The International Society for Optical Engineering, vol 7295:72951I

  5. Maeng JS, Park JH, Jang SM, Han SY (2013) A modeling approach to energy savings of flying Canada geese using computational fluid dynamics. J Theor Biol 320:76–85

    Article  MathSciNet  Google Scholar 

  6. Hubel T, Tropea C (2009) Experimental investigation of a flapping wing model. Exp Fluids 46:945–961

    Article  Google Scholar 

  7. Send W, Fischer M, Jebens K, Mugrauer R, Nagarathinam A, Scharstein F (September, 2012) Artificial hinged-wind bird with active torsion and partially linear kinematics, 28th Congress of the International Council of the Aeronautical Sciences, 23-28

  8. Parslew B, Crowther W (2010) Simulating avian wingbeat kinematics. J Biomech 43:3191–3198

    Article  Google Scholar 

  9. Nakata T, Liu H, Tanaka Y, Nishihashi N, Wang X, Sato A (2011) Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle. Bioinspir Biomim 6:045002

    Article  ADS  Google Scholar 

  10. Tsai B, Fu YC (2009) Design and aerodynamic analysis of a flapping-wing micro aerial vehicle. Aerosp Sci Technol 13:383–392

    Article  Google Scholar 

  11. Grauer J, Hubbard J (2009) Modeling of ornithopter flight dynamics for state estimation and control. In: 2010 American control conference, June 30–July 02, Baltimore

  12. Thomas A, Taylor G (2001) Animal flight dynamics I. Stability in gliding flight. J Theor Biol 212:399–424

    Article  Google Scholar 

  13. Thomas A, Taylor G (2002) Animal flight dynamics II. Longitudinal stability in flapping flight. J Theor Biol 214:351–370

    Article  Google Scholar 

  14. Mueller T, DeLaurier J (2003) Aerodynamics of small vehicles. Ann Rev Fluid Mech 35:89–111

    Article  ADS  MATH  Google Scholar 

  15. Shyy W, Lian Y, Tang J, Viieru D, Liu H (2007) Aerodynamics of low Reynolds number flyers, Cambridge aerospace series, Cambridge University Press, New York

    Google Scholar 

  16. Bruderer B, Boldt A (2001) Flight characteristics of birds: I. Radar measurements of speeds. IBIS Int J Avian Sci 143(2):178–204

    Google Scholar 

  17. Bruderer B, Peter D, Boldt A, Liechti F (2010) Wing-beat characteristics of birds recorded with tracking radar and cine camera. IBIS Int J Avian Sci 152(2):272–291

    Google Scholar 

  18. Pennycuick C (2008) Modelling the flying bird. Elsevier, Amsterdam

    Google Scholar 

  19. Liu T, Kuykendoll K, Rhew R, Jones S (2004) Avian wings. In: 24th AIAA aerodynamic measurement technology and ground testing conference, AIAA 2004–2186, Portland

  20. Negrello F, Silvestri P, Lucifredi A, Guerrero JE, Bottaro A (2014) Preliminary design of a small-sized flapping UAV. II. Kinematic and structural aspects, Submitted

  21. Taylor GK, Nudds RL, Thomas AR (2003) Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency. Nature 425:707–711

    Article  ADS  Google Scholar 

  22. Nudds RL, Taylor GK, Thomas AR (2004) Tuning of Strouhal number for high propulsive efficiency accurately predicts how wingbeat frequency and stroke amplitude relate and scale with size and flight speed in birds. Proc Biol Sci 7:2071–2076

    Article  Google Scholar 

  23. Rohr J, Fish F (2004) Strouhal number and optimization of swimming by odontocete cetaceans. J Exp Biol 207:1633–1642

    Article  Google Scholar 

  24. Triantafyllou MS, Triantafyllou GS, Gopalkrishnan R (1991) Wake mechanics for thrust generation in oscillating foils. Phys Fluids 3:2835–2837

    Article  ADS  Google Scholar 

  25. Guerrero JE (2010) Wake signature and aerodynamic performance of finite-span root flapping rigid wings. J Bionic Eng 7:S109–S122

    Article  MathSciNet  Google Scholar 

  26. Ansys® Academic research, release 15, help system, ansys fluent theory guide, ANSYS, Inc

  27. Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 32:1598–1605

    Article  ADS  Google Scholar 

  28. Kader B (1981) Temperature and concentration profiles in fully turbulent boundary layers. Int J Heat Mass Transf 24:1541–1544

    Article  Google Scholar 

  29. Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 3:269–289

    Article  ADS  MATH  Google Scholar 

  30. Jeong J, Hussain F (1995) On the identification of a vortex. J Fluids Mech 285:69–94

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Guerrero JE (2010) Aerodynamic performance of cambered heaving airfoils. AIAA J 48:2694–2698

    Article  ADS  MathSciNet  Google Scholar 

  32. Selig MS, Guglielmo JJ (1997) High-lift low Reynolds number airfoil design. AIAA J Aircr 34:72–79

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bottaro.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s11012-016-0571-3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerrero, J.E., Pacioselli, C., Pralits, J.O. et al. Preliminary design of a small-sized flapping UAV: I. Aerodynamic performance and static longitudinal stability. Meccanica 51, 1343–1367 (2016). https://doi.org/10.1007/s11012-015-0298-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0298-6

Keywords

Navigation