Skip to main content
Log in

Non-linear dynamic characteristic of a relief valve controlled by a thin annular plate

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In current research, the transverse motion of a thin annular plate is studied, thus determining the static and dynamic opening of a relief valve. Using the geometrically non-linear theory of thin plates, the governing equations in cylindrical coordinates are systematically deduced for obtaining the transient behavior. An equivalent method for replacing the concentrated force is innovatively proposed so that all of the loads of the plates can be given by a unified expression, which reduces the number of the governing equations and intermediate boundary conditions. Combining harmonic differential quadrature (HDQ) and method of solving ordinary differential equations, the governing equations are rapidly solved out. The results of the numerical method are verified with those of finite element analysis (FEA). Applying step loads, all of the theoretical values and FEA results give us insight into the attenuate vibration response of the relief valve, showing great ability of keeping steady positions and rapid dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Li QS, Liu J, Xiao HB (2004) A new approach for bending analysis of thin circular plates with large deflection. Int J Mech Sci 46:173–180

    Article  MATH  Google Scholar 

  2. Causemann P (2003) Modern Vibration Damping Systems. ATZ Worldw 105:10–13

    Google Scholar 

  3. Heiβng B, Ersoy M (2011) Chassis hand book: chassis components. Springer, Wiesbaden

    Google Scholar 

  4. Heiβng B, Ersoy M (2011) Chassis hand book: chassis control systems. Springer, Wiesbaden

    Google Scholar 

  5. Nishawala V (2011) A study of large deflection of beams and plates. Dissertation, University of New Jersey

  6. Kim K, Yoo CH (2010) Analytical solution to flexural responses of annular sector thin-plates. Thin-Walled Struct 48:879–887

    Article  Google Scholar 

  7. Mohammadi M, Ghayour M, Farajpour A (2013) Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model. Compos B 45:32–42

    Article  Google Scholar 

  8. Mashat DS, Zenkour AM (2014) Hygrothermal bending analysis of a sector-shaped annular plate with variable radial thickness. Compos Struct 113:446–458

    Article  Google Scholar 

  9. Hosseini-Hashemi S, Fadaee M, Es’haghi M (2010) A novel approach for in-plane/out-of-plane frequency analysis of functionally graded circular/annular plates. Int J Mech Sci 52:1025–1035

    Article  Google Scholar 

  10. Golmakania ME, Kadkhodayan M (2013) Large deflection thermoelastic analysis of functionally graded stiffened annular sector plates. Int J Mech Sci 69:94–106

    Article  Google Scholar 

  11. Golmakani ME, Mehrabian M (2014) Nonlinear bending analysis of ring-stiffened circular and annular general angle-ply laminated plates with various boundary conditions. Mech Res Commun 59:42–50

    Article  Google Scholar 

  12. Ghiasian SE, Kiani Y, Sadighi M, Eslami MR (2014) Thermal buckling of shear deformable temperature dependent circular/annular FGM plates. Int J Mech Sci 81:137–148

    Article  Google Scholar 

  13. Ebrahimi F, Naei MH, Rastgoo A (2009) Geometrically nonlinear vibration analysis of piezoelectrically actuated FGM plate with an initial large deformation. J Mech Sci Technol 23:2107–2124

    Article  Google Scholar 

  14. Breslavsky ID, Amabili M, Legrand M (2014) Physically and geometrically non-linear vibrations of thin rectangular plates. Int J Non-Linear Mech 58:30–40

    Article  Google Scholar 

  15. Zhou D, Lo SH, Cheung YK (2009) 3-D vibration analysis of annular sector plates using the Chebyshev–Ritz method. J Sound Vib 320:421–437

    Article  ADS  Google Scholar 

  16. Hashemi SH, Taher HRD, Omidi M (2008) 3-D free vibration analysis of annular plates on Pasternak elastic foundation via p-Ritz method. J Sound Vib 311:1114–1140

    Article  ADS  Google Scholar 

  17. Gürses M, Akgöz B, Civalek Ö (2012) Mathematical modeling of vibration problem of nano-sized annular sector plates using the nonlocal continuum theory via eight-node discrete singular convolution transformation. Appl Math Comput 219:3226–3240

    Article  MathSciNet  MATH  Google Scholar 

  18. Nikkhooa A, Hassanabadib ME, Azamc SE, Amiriba JV (2014) Vibration of a thin rectangular plate subjected to series of moving inertial loads. Mech Res Commun 55:105–113

    Article  Google Scholar 

  19. Xie X, Jin GY, Ye TG, Liu ZG (2014) Free vibration analysis of functionally graded conical shells and annular plates using the Haar wavelet method. Appl Acoust 85:130–142

    Article  Google Scholar 

  20. Li YQ, Li J (2007) Free vibration analysis of circular and annular sectorial thin plates using curve strip Fourier p-element. J Sound Vib 305:457–466

    Article  Google Scholar 

  21. Allahverdizadeh A, Naei MH, Bahrami MN (2008) Nonlinear free and forced vibration analysis of thin circular functionally graded plates. J Sound Vib 310:966–984

    Article  ADS  MATH  Google Scholar 

  22. Fua ZQ, Lin SY, Xian XJ (2009) Vibration of annular plate concentrators with conical cross-section. J Sound Vib 321:1026–1035

    Article  ADS  Google Scholar 

  23. Zhou ZH, Wong KW, Xu XS, Leung AYT (2011) Natural vibration of circular and annular thin plates by Hamiltonian approach. J Sound Vib 330:1005–1017

    Article  ADS  Google Scholar 

  24. Hasheminejad SM, Ghaheri A, Rezaei S (2012) Semi-analytic solutions for the free in-plane vibrations of confocal annular elliptic plates with elastically restrained edges. J Sound Vib 331:434–456

    Article  ADS  Google Scholar 

  25. Shojaee S, Izadpanah E, Valizadeh N, Kiendl J (2012) Free vibration analysis of thin plates by using a NURBS-based isogeometric approach. Finite Elem Anal Des 61:23–34

    Article  MathSciNet  Google Scholar 

  26. Esen İ (2013) A new finite element for transverse vibration of rectangular thin plates under a moving mass. Finite Elem Anal Des 66:26–35

    Article  MathSciNet  MATH  Google Scholar 

  27. Hosseini-Hashemi S, Derakhshani M, Fadaee M (2013) An accurate mathematical study on the free vibration of stepped thickness circular/annular Mindlin functionally graded plates. Appl Math Model 37:4147–4164

    Article  MathSciNet  MATH  Google Scholar 

  28. Es’haghi M (2014) Accurate approach implementation in vibration analysis of thick sector plates. Int J Mech Sci 79:1–14

    Article  Google Scholar 

  29. Duan GH, Wang XW (2014) Vibration analysis of stepped rectangular plates by the discrete singular convolution algorithm. Int J Mech Sci 82:100–109

    Article  Google Scholar 

  30. Civalek Ö (2004) Application of differential quadrature (DQ) and (HDQ) for buckling analysis of thin isotropic plates and elastic columns. Eng Struct 26:171–186

    Article  Google Scholar 

  31. Han JB, Liew KM (1998) Analysis of annular Reissner/Mindlin plates using differential quadrature method. Int J Mech Sci 40:651–661

    Article  MATH  Google Scholar 

  32. Eftekhari SA, Jafari AA (2012) A mixed method for free and forced vibration of rectangular plates. Appl Math Model 36:2814–2831

    Article  MathSciNet  MATH  Google Scholar 

  33. Tornabene F, Viola E, Inman DJ (2009) 2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and annular plate structures. J Sound Vib 328:259–290

    Article  ADS  Google Scholar 

  34. Tornabene F, Viola E (2009) Free vibrations of four-parameter functionally graded parabolic panels and shells of revolution. Eur J Mech A Solids 28:991–1013

    Article  MATH  Google Scholar 

  35. Tornabene F (2009) Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution. Comput Methods Appl Mech Eng 198:2911–2935

    Article  ADS  MATH  Google Scholar 

  36. Tornabene F, Liverani A, Caligiana G (2012) Laminated composite rectangular and annular plates: a GDQ solution forstatic analysis with a posteriori shear and normal stress recovery. Compos Part B 43:1847–1872

    Article  Google Scholar 

  37. Eftekhari SA, Jafari AA (2014) A mixed modal-differential quadrature method for free and forced vibration of beams in contact with fluid. Meccanica 49:535–564

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang W, Wang DM, Yao MH (2014) Using Fourier differential quadrature method to analyze transverse nonlinear vibrations of an axially accelerating viscoelastic beam. Nonlinear Dyn 78:839–856

    Article  MathSciNet  MATH  Google Scholar 

  39. Pu JP, Zheng JJ (2006) Structural dynamic responses analysis applying differential quadrature method. J Zhejiang Univ Sci A 7:1831–1838

    Article  MATH  Google Scholar 

  40. Liu GR, Wu TY (2002) Multipoint boundary value problems by differential quadrature method. Math Comput Model 35:215–222

    Article  MathSciNet  MATH  Google Scholar 

  41. Yuan XJ, Guo KH (2015) Modelling and analysis for a pilot relief valve using CFD method and deformation theory of thin plates. Sci China Technol Sci 58:979–998

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-ju Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Xj., Guo, Kh. Non-linear dynamic characteristic of a relief valve controlled by a thin annular plate. Meccanica 51, 1141–1156 (2016). https://doi.org/10.1007/s11012-015-0274-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0274-1

Keywords

Navigation