Skip to main content
Log in

Tactile display with rigid coupling based on soft actuator

  • Soft Mechatronics
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The tactile display is a device which physically stimulates the human skin to reproduce the feel of touch. This paper presents a novel tactile display device driven by a dielectric elastomer actuator. The device adopts an indirect actuation method by using a rigid coupling, which aims to avoid direct contact of the human skin with the actuator. The rigid coupling is made of silicone to transmit the movement of the actuator to the touch layer located on the top surface of the coupling and provides the feeling of softness on contact. The device produces displacement about 350–140 μm at 0.3–10 Hz, which meets frequency requirements for simulating the Merkel cells as well as Meissner corpuscle. The force to simulate the fingertips can be exerted over 44 mN. This work describes its design, analysis and fabrication method in details with its experimental evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Choi HR, Lee SW, Jung KM, Koo JC, Lee SI, Choi HG, Jeon JW, Nam JD (2004) Tactile display as a braille display for the visually disabled. In: Proceedings IEEE/RSJ international conference on intelligent robots and systems, vol 2, pp 1985–1990

  2. Tsukada K, Yasummura M (2004) Activebelt: belt-type wearable tactile display for directional navigation. In: Proceedings of UbiComp2004, pp 384–399

  3. Corteso R, Park J, Khatib O (2006) Real-time adaptive control for haptic telemanipulation with Kalman active observers. IEEE Trans Robot 22:987–999

    Article  Google Scholar 

  4. Moy G, Wagner C, Fearing RS (2000) A compliant tactile display for teletaction. In: Proceedings IEEE international conference on robotics and automation, vol 4, pp 3409–3415

  5. Chang A, OModhrain S, Jacob R, Gunther E, Ishii H (2002) ComTouch: design of a vibrotactile communication device. In: Proceedings of the conference on designing interactive systems, pp 312–320

  6. Alahakone AU, Senanayake SMNA (2009) Vibrotactile feedback systems: current trends in rehabilitation, sports and information display. In: Proceedings IEEE/ASME international conference on advanced intelligent mechatronics, pp 1148–1152

  7. Wang Q, Levesque V, Pasquero J, Hayward V (2006) A haptic memory game using the STReSS2 tactile display. ACM CHI 2006 Extended Abstracts, pp 271–274

  8. Niu X, Brochu P, Salazar B, Pei Q (2011) Refreshable tactile displays based onbistable electroactive polymer. In: Proceedings of SPIE (EAPAD) 7976

  9. Kajimoto H, Kawakami N, Tachi S, Inami M (2004) Smarttouch: electric skin to touch the untouchable. IEEE Comput Graph Appl 24:36–43

    Article  Google Scholar 

  10. King HH, Donlin R, Hannaford B (2010) Perceptual thresholds for single vs. multi-finger haptic interaction. In: Proceedings IEEE haptics symposium, pp 95–99

  11. Sarakoglou I, Garcia-Hernandez G, Tsagarakis NG, Caldwell DG (2012) A high performance tactile feedback display and its integration in teleoperation. IEEE Trans Haptics 5:252–263

    Article  Google Scholar 

  12. Wagner CR, Lederman SJ, Howe RD (2002) A tactile shape display using RC servomotor. In: The tenth symposium on haptic interface for virtual environment and teleoperator systems, pp 354–355

  13. Wellman PS, Peine WJ, Favalora G, Howe RD (1997) Mechanical design and control of a high-bandwidth shape memory alloy tactile display. In: Casals A, de Almeida AT (eds) Experimental robotics V, vol 232. The fifth international symposium, pp 56–66

  14. Wang Q, Hayward V (2006) Compact, portable, modular, high-performance, distributed tactile transducer device based on lateral skin deformation. In: Proceedings of the symposium on haptic interfaces for virtual environment and teleoperator systems, pp 67–72

  15. Taylor PM, Hosseini-Sianaki A, Varley CJ (1996) An electrorheological fluid-based tactile array for virtual environments. In: IEEE international conference on robotics and automation, pp 18–23

  16. Scilingo EP, Bicchi A, Rossi DD, Scotto A (2000) A magnetorheological fluid as a haptic display to replicate perceived compliance of biological tissues. In: International IEEE–EMBS special topic conference on microtechnologies in medicine and biology, pp 229–233

  17. Iwamoto T, Maeda T, Shinoda H (2001) Focused ultrasound for tactile feeling display. In: The eleventh international conference on artificial reality and telexistence, vol 2, pp 1239–1244

  18. Koo IM, Jung KM, Koo JC, Nam JD, Lee YK, Choi HR (2008) Wearable tactile display based on soft actuator. IEEE Trans Robot 24:549–558

    Article  Google Scholar 

  19. Carpi F, Frediani G, De Rossi D (2011) Opportunities of hydrostatically coupled dielectric elastomer actuators for haptic interfaces. Proc. SPIE Smart Struct Mater 7976:797618

    Google Scholar 

  20. Lee HS, Phung H, Lee DH, Kim UK, Nguyen CT, Moon HP, Koo JC, Nam JD, Choi HR (2014) Design analysis and fabrication of arrayed tactile display based on dielectric elastomer actuator. Sensors Actuators A Phys 205:191–198

    Article  Google Scholar 

  21. Matysek M, Lotz P, Winterstein T, Schlaak H (2009) Dielectric elastomer actuators for tactile displays. In: Proceedings world haptics 3rd joint EuroHaptics conference symposium haptic interfaces virtual environment teleoperator system, pp 290–295

  22. http://www.artificialmuscle.com/

  23. Lee HS, Lee DH, Kim DG, Kim UK, Lee CH, Linh NN, Toan NC, Koo JC, Moon HP, Nam JD, Han JH, Choi HR (2012) Tactile display with rigid coupling. In: Proceedings SPIE340, electroactive polymer actuators and devices (EAPAD)

  24. Pelrine R, Kornbluh R, Joseph J (1988) Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sensor Actuators A Phys 64:77–85

    Article  Google Scholar 

  25. Jones LA, Lederman SJ (2006) Human hand function. Oxford University Press, New York, pp 24–31

    Book  Google Scholar 

  26. Maeno T (2000) Structure and function of finger pad and tactile receptors. J Robot Soc Jpn 18:772–775

    Article  Google Scholar 

  27. Bolanowski SJ, Gescheider GA, Verrillo RT, Checkosky CM (1988) Four channels mediate the mechanical aspects of touch. J Acoust Soc Am 84:1680–1694

    Article  ADS  Google Scholar 

  28. Johansson RS, Vallbo AB (1983) Tactile sensory coding in the glabrous skin of the human hand. Trends Neurosci 6:27–32

    Article  Google Scholar 

  29. Karsten R, Schlaak HF (2012) Adaptive absorber based on dielectric elastomer stack actuator with variable stiffness. In: Proceedings of SPIE electroactive polymer actuators and devices (EAPAD) 8340

  30. Dosher J, Hananford B (2005) Human interaction with small haptic effects. Presence 14:329–344

    Article  Google Scholar 

  31. Carpi F, Frediani G, Nanni M, De Rossi D (2011) Dielectric elastomer actuators with granular coupling. In: Proceedings of SPIE, electroactive polymer actuators and devices (EAPAD) 7976

Download references

Acknowledgments

This research was supported by the convergence technology development program for bionic arm through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (No. 2014M3C1B2048175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyouk Ryeol Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phung, H., Nguyen, C.T., Nguyen, T.D. et al. Tactile display with rigid coupling based on soft actuator. Meccanica 50, 2825–2837 (2015). https://doi.org/10.1007/s11012-015-0270-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0270-5

Keywords

Navigation