Skip to main content
Log in

Steady flow of a non-Newtonian Carreau fluid across an unconfined circular cylinder

  • Brief Notes and Discussions
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The flow of a non-Newtonian, Carreau fluid, directed normally to a horizontal, stationary, circular cylinder is considered in the present paper. The problem is investigated numerically using the commercial code ANSYS FLUENT with a very large calculation domain in order that the flow could be considered unbounded. The investigation covers the power-law index from 0.2 up to 2, the Reynolds number range from 0.1 up to 40 and the Carreau number from 0.1 up to 20. Wake lengths and drag coefficients have been calculated for many combinations of the above three parameters. At low power-law index the wake length changes non-linearly with increasing Reynolds number and as the power-law index rises the variation becomes linear. The drag coefficient reduces in shear-thinning fluids and grows in shear-thickening fluids with increasing Carreau number. At the same Carreau number the drag coefficient is higher is shear-thickening fluids compared to that of shear-thinning fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anderson PD, Galaktionov OS, Peters GWM, van de Vosse FN, Meijer HEH (2000) Mixing of non-Newtonian fluids in time-periodic cavity flows. J Non-Newton Fluid Mech 93:265–286

    Article  MATH  Google Scholar 

  2. Anrade LCF, Petronilio JA, Maneschy CEA (2007) The Carreau-Yasuda fluids: a skin friction equation for turbulent flow in pipes and kolmogorov dissipative scales. J Braz Soc Mech Sci Eng 29:162–167

    Google Scholar 

  3. Barkley D, Henderson RD (1996) Three-dimensional Floquet stability analysis of the wake of a circular cylinder. J Fluid Mech 322:215–241

    Article  ADS  MATH  Google Scholar 

  4. Beudoin A, Huberson S, Rivoalen E (2006) From Navier–Stokes to Stokes by means of particle methods. J Comput Phys 214:264–283

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Capobianchi M, Aziz A (2012) Laminar natural convection from an isothermal vertical surface to pseudoplastic and dilatant fluids. ASME J Heat Transf 134:122502

    Article  Google Scholar 

  6. Carreau PJ (1972) Rheological equations from molecular network theories. Trans Soc Rheol 16:99–127

    Article  Google Scholar 

  7. Chhabra RP, Uhlherr PHT (1980) Creeping motion of spheres through shear-thinning elastic fluids described by the Carreau viscosity equation. Rheol Acta 19:187–195

    Article  Google Scholar 

  8. Coelho PM, Pinho FT (2004) Vortex shedding in cylinder flow of shear-thinning fluids. III: pressure measurements. J Non-Newton Fluid Mech 121:55–68

    Google Scholar 

  9. Fornberg B (1980) A numerical study of steady viscous flow past a circular cylinder. J Fluid Mech 98:819–855

    Article  ADS  MATH  Google Scholar 

  10. Glauert H (1933) Wind tunnel interference on wings, bodies and airscrews. A.R.C.-R. & M. 1566

  11. Giannetti F, Luchini P (2007) Structural sensitivity of the first instability of the cylinder wake. J Fluid Mech 581:167–197

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Hsu JP, Yeh SJ (2008) Drag on two coaxial rigid spheres moving along the axis of a cylinder filled with Carreau fluid. Powder Technol 182:56–71

    Article  Google Scholar 

  13. Lange CF, Durst F, Breuer M (1998) Momentum and heat transfer from cylinders in laminar cross flow at 10−4≤Re ≤ 200. Int J Heat Mass Transf 41:3409–3430

    Article  MATH  Google Scholar 

  14. Lashgari I, Pralits JO, Giannetti F, Brandt L (2012) First instability of the flow of shear-thinning and shear-thickening fluids past a circular cylinder. J Fluid Mech 701:201–227

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Maskell EC (1963) A theory of the blockage effects on bluff bodies and stalled wings in a closed wind tunnel. Aero Res Commun Rep Memo 3400

  16. Mossaz S, Jay P, Magnin A (2010) Criteria for the appearance of recirculating and non-stationary regimes behind a cylinder in a viscoplastic fluid. J Non-Newton Fluid Mech 165:1525–1535

    Article  MATH  Google Scholar 

  17. Najjar FM, Vanka SP (1995) Simulations of the unsteady separated flow past a normal flat plate. Int J Numer Methods Fluids 21:525–547

    Article  MATH  Google Scholar 

  18. Pantokratoras A (2013) Further results on non-Newtonian power-law flows past a two-dimensional flat plate with finite length. J Mech Sci Technol 27:1995–2003

    Article  Google Scholar 

  19. Pantokratoras A (2013) Steady laminar assisted mixed convection normally to a heated horizontal plate with finite length. Int J Therm Sci 65:158–169

    Article  Google Scholar 

  20. Pantokratoras A (2014) The flow along a wall moving reversely to a parallel non-Newtonian, power-law, stream. Prog Comput Fluid Dyn 14:189–204

    Article  MathSciNet  Google Scholar 

  21. Panton RL (2005) Incompressible flow, 3rd edn. Wiley, New Jersey

    MATH  Google Scholar 

  22. Posdziech O, Grundmann R (2007) A systematic approach to the numerical calculation of fundamental quantities of the two-dimensional flow over a circular cylinder. J Fluids Struct 23:479–499

    Article  Google Scholar 

  23. Provansal M, Mathis C, Boyer L (1987) Bénard-von Kármán instability: transient and forced regimes. J Fluid Mech 182:1–22

    Article  ADS  MATH  Google Scholar 

  24. Rodrigue D, DE Kee D, Fong CFCM (1996) The slow motion of a spherical particle in a Carreau fluid. Chem Eng Commun 154:203–215

    Article  Google Scholar 

  25. Shamekhi A, Sadeghy K (2009) Cavity flow simulation of Carreau–Yasuda non-Newtonian fluids using PIM meshfree method. Appl Math Model 33:4131–4145

    Article  MathSciNet  MATH  Google Scholar 

  26. Sen S, Mittal S, Biswas G (2009) Steady separated flow past a circular cylinder at low Reynolds numbers. J Fluid Mech 620:89–119

    Article  ADS  MATH  Google Scholar 

  27. Schlichting H, Gersten K (2003) Boundary layer theory, 9th edn. Springer, Berlin

    MATH  Google Scholar 

  28. Stojkovich D, Breuer M, Durst F (2002) Effect of high rotation rates on the laminar flow around a circular cylinder. Phys Fluids 14:3160–3178

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Uddin J, Marston JO, Thoroddsen ST (2012) Squeeze flow of a Carreau fluid during sphere impact. Phys Fluids 24:073104

    Article  ADS  MATH  Google Scholar 

  30. White F (2006) Viscous fluid flow, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  31. Zdravkovich MM (1997) Flow around circular cylinders, vol 1. Oxford University Press, Oxford

    MATH  Google Scholar 

  32. Zhang L, Yang C, Mao Z-S (2010) Numerical simulation of a bubble rising in shear-thinning fluids. J Non-Newton Fluid Mech 165:555–567

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asterios Pantokratoras.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pantokratoras, A. Steady flow of a non-Newtonian Carreau fluid across an unconfined circular cylinder. Meccanica 51, 1007–1016 (2016). https://doi.org/10.1007/s11012-015-0258-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0258-1

Keywords

Navigation