Advertisement

Meccanica

, Volume 51, Issue 4, pp 951–977 | Cite as

In-plane thermal loading effects on vibrational characteristics of functionally graded nanobeams

  • Farzad EbrahimiEmail author
  • Erfan Salari
  • Seyed Amir Hosein Hosseini
Article

Abstract

In the present study, the effect of in-plane thermal loading on vibrational behaviour of functionally graded (FG) nanobeams are carried out by presenting both Navier type solution and differential transform method. Classical and first order shear deformation beam theories are adopted to count for the effect of shear deformations. Thermo-mechanical properties of FG nanobeam are supposed to vary smoothly throughout the thickness based on power-law model and material properties are assumed to be temperature-dependent. Eringen’s nonlocal elasticity theory is exploited to describe the size dependency of FG nanobeam. Using Hamilton’s principle, the nonlocal equations of motion together with corresponding boundary conditions are obtained for the free vibration analysis of FG nanobeams based on Euler–Bernoulli and Timoshenko beam theories. According to the numerical results, it is revealed that the proposed modeling and semi analytical approach can provide accurate frequency results of the FG nanobeams as compared to analytical results and also some cases in the literature. In following a parametric study is accompanied to examine the effects of the several parameters such as temperature change, gradient indexes, small scale parameter, mode number and boundary conditions on the natural frequencies of the temperature-dependent FG nanobeams in detail. It is explicitly shown that the vibration behaviour of a FG nanobeam are significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of FG nanobeams.

Keywords

In-plane thermal loading Eringen’s nonlocal elasticity theory vibration Functionally graded materials Elasticity Navier type solution 

References

  1. 1.
    Ebrahimi F, Rastgoo A (2008) Free vibration analysis of smart annular FGM plates integrated with piezoelectric layers. Smart Mater Struct 17:015044. doi: 10.1088/0964-1726/17/1/015044 ADSCrossRefGoogle Scholar
  2. 2.
    Ebrahimi F, Rastgoo A (2008) An analytical study on the free vibration of smart circular thin FGM plate based on classical plate theory. Thin-Walled Struct 46:1402–1408. doi: 10.1016/j.tws.2008.03.008 CrossRefGoogle Scholar
  3. 3.
    Ebrahimi F, Rastgoo A, Atai AA (2009) A theoretical analysis of smart moderately thick shear deformable annular functionally graded plate. Eur J Mech A Solids 28:962–973. doi: 10.1016/j.euromechsol.2008.12.008 CrossRefzbMATHGoogle Scholar
  4. 4.
    Ebrahimi F, Naei MH, Rastgoo A (2009) Geometrically nonlinear vibration analysis of piezoelectrically actuated FGM plate with an initial large deformation. J Mech Sci Technol 23:2107–2124. doi: 10.1007/s12206-009-0358-8 CrossRefGoogle Scholar
  5. 5.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58ADSCrossRefGoogle Scholar
  6. 6.
    Pradhan SC, Mandal U (2013) Finite element analysis of CNTs based on nonlocal elasticity and Timoshenko beam theory including thermal effect. Phys E 53:223–232. doi: 10.1016/j.physe.2013.04.029 CrossRefGoogle Scholar
  7. 7.
    Wang Q (2005) Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J Appl Phys 98:124301. doi: 10.1063/1.2141648 ADSCrossRefGoogle Scholar
  8. 8.
    Wang Q, Varadan VK (2006) Vibration of carbon nanotubes studied using nonlocal continuum mechanics. Smart Mater Struct 15:659. doi: 10.1088/0964-1726/15/2/050 ADSCrossRefGoogle Scholar
  9. 9.
    Eringen AC (1972) Nonlocal polar elastic continua. Int J Eng Sci 10:1–16. doi: 10.1016/0020-7225(72)90070-5 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710. doi: 10.1063/1.332803 ADSCrossRefGoogle Scholar
  11. 11.
    Fu Y, Du H, Zhang S (2003) Functionally graded TiN/TiNi shape memory alloy films. Mater Lett 57:2995–2999. doi: 10.1016/S0167-577X(02)01419-2 CrossRefGoogle Scholar
  12. 12.
    Lü CF, Lim CW, Chen WQ (2009) Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory. Int J Solids Struct 46:1176–1185. doi: 10.1016/j.ijsolstr.2008.10.012 CrossRefzbMATHGoogle Scholar
  13. 13.
    Rahaeifard M, Kahrobaiyan MH, Ahmadian MT (2009) Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials. Paper presented at the 3rd international conference on micro- and nanosystemsGoogle Scholar
  14. 14.
    Carbonari RC, Silva EC, Paulino GH (2009) Multi-actuated functionally graded piezoelectric micro-tools design: a multiphysics topology optimization approach. Int J Numer Methods Eng 77:301–336. doi: 10.1002/nme.2403 CrossRefzbMATHGoogle Scholar
  15. 15.
    Lun FY, Zhang P, Gao FB, Jia HG (2006) Design and fabrication of micro optomechanical vibration sensor. Microfab Technol 120:61–64Google Scholar
  16. 16.
    Witvrouw A, Mehta A (2005) The use of functionally graded poly-SiGe layers for MEMS applications. Mater Sci Forum 492:255–260. doi: 10.4028/www.scientific.net/MSF.492-493.255 CrossRefGoogle Scholar
  17. 17.
    Lee Z, Ophus C, Fischer LM, Nelson-Fitzpatrick N, Westra KL, Evoy S, Radmilovic V, Dahmen U, Mitlin D (2006) Metallic NEMS components fabricated from nanocomposite Al–Mo films. Nanotechnology 17:3063. doi: 10.1088/0957-4484/17/12/042 CrossRefGoogle Scholar
  18. 18.
    Kim HS, Yang Y, Koh JT, Lee KK, Lee DJ, Lee KM, Park SW (2009) Fabrication and characterization of functionally graded nano-micro porous titanium surface by anodizing. J Biomed Mater Res B Appl Biomater 88:427–435. doi: 10.1002/jbm.b.31124 CrossRefGoogle Scholar
  19. 19.
    Kerman K, Lai BK, Ramanathan S (2012) Nanoscale compositionally graded thin-film electrolyte membranes for low-temperature solid oxide fuel cells. Adv Energy Mater 2:656–661. doi: 10.1002/aenm.201100751 CrossRefGoogle Scholar
  20. 20.
    Bafekrpour E, Simon GP, Habsuda J, Naebe M, Yang C, Fox B (2012) Fabrication and characterization of functionally graded synthetic graphite/phenolic nanocomposites. Mater Sci Eng A 545:123–131. doi: 10.1016/j.msea.2012.02.097 CrossRefGoogle Scholar
  21. 21.
    Wang Y, Ni QQ, Zhu Y, Natsuki T (2014) Fabrication of functionally graded nano-TiO2-reinforced epoxy matrix composites. Polym Compos 35:557–563. doi: 10.1002/pc.22695 CrossRefGoogle Scholar
  22. 22.
    Akgöz B, Civalek Ö (2014) Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium. Int J Eng Sci 85:90–104. doi: 10.1016/j.ijengsci.2014.08.011 CrossRefGoogle Scholar
  23. 23.
    Şimşek M, Reddy JN (2013) A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory. Compos Struct 101:47–58. doi: 10.1016/j.compstruct.2013.01.017 CrossRefGoogle Scholar
  24. 24.
    Ansari R, Gholami R, Sahmani S (2011) Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory. Compos Struct 94:221–228. doi: 10.1016/j.compstruct.2011.06.024 CrossRefzbMATHGoogle Scholar
  25. 25.
    Nateghi A, Salamat-talab M (2013) Thermal effect on size dependent behavior of functionally graded microbeams based on modified couple stress theory. Compos Struct 96:97–110. doi: 10.1016/j.compstruct.2012.08.048 CrossRefGoogle Scholar
  26. 26.
    Ke LL, Wang YS, Yang J, Kitipornchai S (2012) Nonlinear free vibration of size-dependent functionally graded microbeams. Int J Eng Sci 50:256–267. doi: 10.1016/j.ijengsci.2010.12.008 MathSciNetCrossRefGoogle Scholar
  27. 27.
    Eltaher MA, Emam SA, Mahmoud FF (2012) Free vibration analysis of functionally graded size-dependent nanobeams. Appl Math Comput 218:7406–7420. doi: 10.1016/j.amc.2011.12.090 MathSciNetzbMATHGoogle Scholar
  28. 28.
    Eltaher MA, Alshorbagy AE, Mahmoud FF (2013) Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams. Compos Struct 99:193–201. doi: 10.1016/j.compstruct.2012.11.039 CrossRefGoogle Scholar
  29. 29.
    Eltaher MA, Emam SA, Mahmoud FF (2013) Static and stability analysis of nonlocal functionally graded nanobeams. Compos Struct 96:82–88. doi: 10.1016/j.compstruct.2012.09.030 CrossRefGoogle Scholar
  30. 30.
    Hosseini-Hashemi S, Nazemnezhad R (2013) An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects. Compos B Eng 52:199–206. doi: 10.1016/j.compositesb.2013.04.023 CrossRefGoogle Scholar
  31. 31.
    Asgharifard Sharabiani P, Yazdi MRH (2013) Nonlinear free vibrations of functionally graded nanobeams with surface effects. Compos B Eng 45:581–586. doi: 10.1016/j.compositesb.2012.04.064 CrossRefGoogle Scholar
  32. 32.
    Şimşek M, Yurtcu HH (2013) Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory. Compos Struct 97:378–386. doi: 10.1016/j.compstruct.2012.10.038 CrossRefGoogle Scholar
  33. 33.
    Kiani K (2014) Longitudinal and transverse instabilities of moving nanoscale beam-like structures made of functionally graded materials. Compos Struct 107:610–619. doi: 10.1016/j.compstruct.2013.07.035 CrossRefGoogle Scholar
  34. 34.
    Niknam H, Aghdam MM (2015) A semi analytical approach for large amplitude free vibration and buckling of nonlocal FG beams resting on elastic foundation. Compos Struct 119:452–462. doi: 10.1016/j.compstruct.2014.09.023 CrossRefGoogle Scholar
  35. 35.
    Thermophysical Properties Research Center (1967) Thermophysical properties of high temperature solid materials. In: Touloukian YS (ed) MacmillanGoogle Scholar
  36. 36.
    Eringen AC, Edelen DGB (1972) On nonlocal elasticity. Int J Eng Sci 10:233–248. doi: 10.1063/1.332803 MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Tauchert TR (1974) Energy principles in structural mechanics. McGraw-Hill, LondonGoogle Scholar
  38. 38.
    Hassan IAH (2002) On solving some eigenvalue problems by using a differential transformation. Appl Math Comput 127:1–22. doi: 10.1016/S0096-3003(00)00123-5 MathSciNetzbMATHGoogle Scholar
  39. 39.
    Rahmani O, Pedram O (2014) Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory. Int J Eng Sci 77:55–70. doi: 10.1016/j.ijengsci.2013.12.003 MathSciNetCrossRefGoogle Scholar
  40. 40.
    Ju SP (2004) Application of differential transformation to transient advective–dispersive transport equation. Appl Math Comput 155:25–38. doi: 10.1016/S0096-3003(03)00755-0 MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Farzad Ebrahimi
    • 1
    Email author
  • Erfan Salari
    • 1
  • Seyed Amir Hosein Hosseini
    • 2
  1. 1.Department of Mechanical Engineering, Faculty of EngineeringImam Khomeini International UniversityQazvinIran
  2. 2.Department of Mechanical EngineeringUniversity of ZanjanZanjanIran

Personalised recommendations