Skip to main content
Log in

Numerical modeling of the low-velocity impact of composite plates using a shell-based SPH method

  • Advances in the Mechanics of Composite and Sandwich Structures
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper investigates the numerical modeling of low velocity impact of composite multilayered plates using the smoothed particle hydrodynamics (SPH) method. Recently the authors developed a shell-based SPH (SSPH) model for the modeling of large deformations of composite multilayered structures, has been extended to the impact modeling. The proposed new shell-based SPH formulation is based on the Mindlin–Reissner theory which accounts for transverse shearing stresses. In the present investigation, the impact modeling solution is estimated using the explicit dynamics integration scheme, together with the Hertzian contact theory, for the fast estimation of contact forces. The predictive capability of the present SSPH model is demonstrated by comparison of the results with reference solutions for the impact response of composite multilayered plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. General Union Environment, Action Programme to 2020: living well, within the limits of our planet (2014). ISBN 978-92-79-34724-5. doi:10.2779/66315. Publications Office of the European Union

  2. Panciroli R, Abrate S, Castani B, Rajapakse YDS (2013) Dynamic failure of composite and sandwich structures. Solid Mechanics and Its Applications 192. Springer, Netherlands. ISBN:978-94-007-5329-7

  3. Yang SH, Sun CT (1982) Indentation law for composite laminates. ASTM STP 787:425–429

    Google Scholar 

  4. Tan TM, Sun CT (1985) Use of static indentation laws in the impact analysis of laminated composite plates. J Appl Mech 52:6–12

    Article  Google Scholar 

  5. Aslan Z, Karakuzu R, Okutan B (2003) The response of laminated composite plates under low-velocity impact loading. Compos Struct 59:119–127

    Article  Google Scholar 

  6. Abrate S (1998) Impact on composite structures. Cambridge University Press, Cambridge. ISBN-100-521-01832-3

  7. Suemasu H, Herth S, Maier M (1994) Indentation of spherical head indentors on transversely isotropic composite plates. J Compos Mater 28(17):1723–1739

    Article  Google Scholar 

  8. Wu E, Yen CS (1994) The contact behavior between laminated composite plates and rigid spheres. J Appl Mech 61:60–66

    Article  Google Scholar 

  9. Choi IH, Lim CH (2004) Low-velocity impact analysis of composite laminates using linearized contact law. Compos Struct 66:125–132

    Article  Google Scholar 

  10. Setoodeh AR, Malekzadeh P, Nikibin K (2009) Low velocity impact analysis of laminated composite plates using a 3D elasticity based layerwise FEM. Mater Des 30:3795–3801

    Article  Google Scholar 

  11. Abrate S (2011) Impact engineering of composite structures. Series: CISM courses and lectures, vol 526. Springer, Wien. ISBN 978-3-7091-0523-8

  12. Reddy JN (2004) Mechanics of laminated composite plates and shells: theory and analysis, 2nd edn. CRC Press, Boca Raton. ISBN 9780849315923

  13. Zhang YX, Yang CH (2009) Recent developments in finite element analysis for laminated composite plates. Compos Struct 88:147–157

    Article  Google Scholar 

  14. Yousefi P, Hosseini-Hashemi Sh, Kargarnovin MH (2012) Force vibration of laminated plates with various shapes subjected to low-velocity impact. J Mater Sci Res 1(3):106–116

    Google Scholar 

  15. Khalili MHA, Ardali A (2013) Low-velocity impact response of doubly curved symmetric cross-ply laminated panel with embedded SMA wires. Compos Struct 105:216–226

    Article  Google Scholar 

  16. Ghasemi FA, Raissi S, Malekzadehfard K (2013) Analytical and mathematical modeling and optimization of fiber metal laminates (FMLs) subjected to low-velocity impact via combined response surface regression and zero-one programming. Lat Am J Solids Struct 10(2):391–408

    Article  Google Scholar 

  17. Wang ZX, Xu J, Qiao P (2014) Nonlinear low-velocity impact analysis of temperature-dependent nanotube-reinforced composite plates. Compos Struct 108:423–434

    Article  Google Scholar 

  18. Belytschko T, Kam Liu W, Moran B, Elkhodary K (2013) Nonlinear finite elements for continua and structures, 2nd edn. Wiley, Hoboken. ISBN: 978-1-118-63270-3

  19. Li S, Liu WK (2004) Meshfree particle methods. Springer, Berlin. ISBN-10: 3540222561

  20. Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer, Amsterdam. ISBN-10 1-4020-3228-5

  21. Ferreira AJM, Kansa EJ, Fasshauer GE (2009) Progress on meshless methods. Edition Springer, Amsterdam. ISBN-10: 9048179971

  22. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024

    Article  ADS  Google Scholar 

  23. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389

    Article  ADS  MATH  Google Scholar 

  24. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37:229–256

    Article  MathSciNet  MATH  Google Scholar 

  25. Atluri SN, Zhu T (1998) A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput Mech 22:117–127

    Article  MathSciNet  MATH  Google Scholar 

  26. Liew KM, Zhao X, Ferreira AJM (2011) A review of meshless methods for laminated and functionally graded plates and shells. Compos Struct 93:2031–2041

    Article  Google Scholar 

  27. Xiao JR, Gilhooley DF, Batra RC, Gillespie JW Jr, McCarthy MA (2008) Analysis of thick composite laminates using a higher-order shear and normal deformable plate theory (HOSNDPT) and a meshless method. Compos Part B Eng 39:414–427

    Article  Google Scholar 

  28. Krysl P, Belytschko T (1996) Analysis of thin plates by the element-free Galerkin method. Comput Mech 17:26–35

    Article  MathSciNet  Google Scholar 

  29. Guiamatsia I, Falzon BG, Davies GAO, Iannucci L (2009) Element-free Galerkin modelling of composite damage. Compos Sci Technol 69:2640–2648

    Article  Google Scholar 

  30. Zhang A, Ming F, Cao X (2014) Analysis of thin plates by the element-free Galerkin method. Comput Mech 225(1):253–275

    MathSciNet  MATH  Google Scholar 

  31. Lin J, Naceur H, Coutellier D, Laksimi A (2014) Geometrically nonlinear analysis of thin-walled structures using efficient shell-based SPH method. Comput Mater Sci 85:127–133

    Article  Google Scholar 

  32. Lin J, Naceur H, Laksimi A, Coutellier D (2014) On the implementation of a nonlinear shell-based SPH method for thin multilayered structures. Compos Struct 108:905–914

    Article  Google Scholar 

  33. Belytschko T, Guo Y, Liu WK, Xiao SP (2000) A unified stability analysis of meshless particle methods. Int J Numer Methods Eng 48:1359–1400

    Article  MathSciNet  MATH  Google Scholar 

  34. Hertz H (1881) Uber die berührung fester elastischer körper. Journal für die reine und angewandte Mathematik 92:156–171

    MathSciNet  Google Scholar 

  35. Johnson KL (2003) Contact mechanics. Cambridge University Press, Cambridge. ISBN: 0-521-34796-3

  36. Sun CT (1977) An analytical method for evaluation of impact damage energy of laminated composites. ASTM Spec Tech Publ 617:427–440

    Google Scholar 

  37. Karas K (1939) Platten Unter Seitlichen Stoss. Ing Arch 10(4):237–250

    Article  MathSciNet  Google Scholar 

  38. Mahajana P, Dutta A (1999) Adaptive computation of impact force under low velocity impact. Comput Struct 70:229–241

    Article  Google Scholar 

  39. Wu HYT, Chang FK (1989) Transient dynamic analysis of laminated composite plates subjected to transverse impact. Comput Struct 31(3):453–466

    Article  Google Scholar 

  40. LS-DYNA Keyword User’s manual, vol I, Ls-dyna R7.1 (revision: 5471). Edition: Livermore Software Technology Corporation (LSTC), Livermore, California, 26 May 2014

  41. Qian Y, Swanson SR (1990) A comparison of solution techniques for impact response of composite plates. Comput Struct 14:177–192

    Article  Google Scholar 

  42. Abrate S (2001) Modeling of impacts on composite structures. Comput Struct 51:129–138

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Naceur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Naceur, H., Coutellier, D. et al. Numerical modeling of the low-velocity impact of composite plates using a shell-based SPH method. Meccanica 50, 2649–2660 (2015). https://doi.org/10.1007/s11012-015-0243-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0243-8

Keywords

Navigation