Skip to main content
Log in

Effects of thermal radiation on hydromagnetic flow over an unsteady stretching sheet embedded in a porous medium in the presence of heat source or sink

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

A boundary layer analysis is performed to study the effects of thermal radiation on the flow of an incompressible viscous electrically conducting fluid over an unsteady stretching sheet embedded in a porous medium in the presence of heat source or sink. The governing boundary layer equations are transformed to ordinary differential equations by using similarity transformation and solved numerically by Runge–Kutta fourth order method in association with quasilinear shooting technique. The effects of unsteadiness parameter, permeability parameter, magnetic parameter, thermal radiation parameter, Prandtl number, heat source or sink parameter and Eckert number are represented graphically on velocity and temperature profiles while local skin friction coefficient and local Nusselt number are represented numerically. The results for the non-magnetic case are in good agreement with earlier published work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A :

Unsteadiness parameter

b :

Positive constant

\( B_{o} \) :

Uniform magnetic field

C f :

Local skin-friction coefficient

C p :

Specific heat at constant pressure

Ec :

Eckert number

f :

Dimensionless stream function

K :

Permeability

\( k^{*} \) :

Absorption coefficient

M :

Magnetic parameter

\( Nu_{x} \) :

Local Nusselt number

Pr:

Prandtl number

Q :

Heat source or sink

q r :

Radiative heat flux

R :

Thermal radiation parameter

\( \text{Re}_{x} \) :

Local Reynolds number

T :

Temperature of the fluid

t :

Time

T w :

Surface temperature

\( T_{\infty } \) :

Free stream temperature

U w :

Surface velocity

u :

Velocity component in the x-direction

v :

Velocity component in the y-direction

x :

Along the stretching surface distance

y :

Normal distance

γ :

Stretching rate

η :

Similarity variable

δ :

Heat source or sink parameter

\( \theta \) :

Dimensionless temperature

\( \kappa \) :

Thermal conductivity

λ :

Permeability parameter

μ :

Coefficient of viscosity

\( \upsilon \) :

Kinematic viscosity

ρ :

Fluid density

\( \sigma_{e} \) :

Electrical conductivity

\( \sigma^{*} \) :

Stefan–Boltzmann constant

ψ :

Stream function

′:

Differentiation with respect to \( \eta \)

w :

Surface conditions

\( \infty \) :

Conditions for away from the surface

References

  1. Sakiadis BC (1961) Boundary-layer behavior on continuous solid surface: I. boundary-layer equations for two-dimensional and axisymmetric flow. AIChE J 7:26–28

    Article  Google Scholar 

  2. Crane LJ (1970) Flow past a stretching plate. Z Angew Math Phys 21:645–647

    Article  Google Scholar 

  3. Gupta PS, Gupta AS (1977) Heat and mass transfer on a stretching sheet with suction or blowing. Can J Chem Eng 55:744–746

    Article  Google Scholar 

  4. Carragher P, Crane LJ (1982) Heat transfer on a continuous stretching sheet. J Appl Math Mech 62:564–565

    Google Scholar 

  5. Banks WHH (1983) Similarity solutions of the boundary-layer equations for a stretching wall. J Mac Theor Appl 2:375–392

    Google Scholar 

  6. Grubka LJ, Bobba KM (1985) Heat transfer characteristics of a continuous, stretching surface with variable temperature. J Heat Transf 107:248–250

    Article  Google Scholar 

  7. Dutta BK, Roy P, Gupta AS (1985) Temperature field in flow over a stretching sheet with uniform heat flux. Int Commun Heat Mass Transf 12:89–94

    Article  Google Scholar 

  8. Ali ME (1995) On thermal boundary layer on a power-law stretched surface with suction or injection. Int J Heat Fluid Flow 16:280–290

    Article  Google Scholar 

  9. Andersson HI, Aarseth JB, Dandapat BS (2000) Heat transfer in a liquid film on an unsteady stretching surface. Int J Heat Mass Transf 43:69–74

    Article  Google Scholar 

  10. Magyari E, Keller B (2000) Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls. Eur J Mech B Fluids 19:109–122

    Article  MathSciNet  Google Scholar 

  11. Chen CH (2003) Heat transfer in a power-law fluid film over an unsteady stretching sheet. Heat Mass Transf 39:791–796

    Article  ADS  Google Scholar 

  12. Ariel PD (2003) Generalized three dimensional flow due to a stretching sheet. J Appl Math Mech 83:844–852

    MathSciNet  Google Scholar 

  13. Elbashbeshy EMA, Bazid MAA (2004) Heat transfer over an unsteady stretching surface. Heat Mass Transf 41:1–4

    Article  ADS  Google Scholar 

  14. Ishak A, Nazar R, Pop I (2008) Heat transfer over an unsteady stretching surface with prescribed heat flux. Can J Phys 86:853–855

    Article  ADS  Google Scholar 

  15. Chiam TC (1994) Stagnation-point flow towards a stretching plate. J Phys Soc Jpn 63:2443–2444

    Article  ADS  Google Scholar 

  16. Mahapatra TR, Gupta AS (2002) Heat transfer in stagnation-point flow towards a stretching sheet. Heat Mass Transf 38:517–521

    Article  ADS  Google Scholar 

  17. Mahapatra TR, Gupta AS (2003) Stagnation-point flow towards a stretching surface. Can J Chem Eng 81:258–263

    Article  Google Scholar 

  18. Jat RN, Chaudhary S (2008) Magnetohydrodynamic boundary layer flow near the stagnation point of a stretching sheet. Il Nuovo Cimento 123B:555–566

    ADS  Google Scholar 

  19. Wang CY (2008) Stagnation flow towards a shrinking sheet. Int J Non-Linear Mech 43:377–382

    Article  Google Scholar 

  20. Fang T, Zhang J (2010) Thermal boundary layers over a shrinking sheet: An analytical solution. Acta Mech 209:325–343

    Article  Google Scholar 

  21. Chaudhary S, Kumar P (2013) MHD slip flow past a shrinking sheet. Appl Math 4:574–581

    Article  Google Scholar 

  22. Raptis A (1998) Radiation and free convection flow through a porous medium. Int Commun Heat Mass Transf 25:289–295

    Article  Google Scholar 

  23. Hossain MA, Khanafer K, Vafai K (2001) The effect of radiation on free convection flow of fluid with variable viscosity from a porous vertical plate. Int J Therm Sci 40:115–124

    Article  Google Scholar 

  24. Kiwan S (2007) Effect of radiative losses on the heat transfer from porous fins. Int J Therm Sci 46:1046–1055

    Article  Google Scholar 

  25. Bataller RC (2008) Radiation effects in the blasius flow. Appl Math Comput 198:333–338

    Article  MathSciNet  Google Scholar 

  26. Pal D, Mondal H (2009) Radiation effects on combined convection over a vertical flat plate embedded in a porous medium of variable porosity. Meccanica 44:133–144

    Article  MathSciNet  Google Scholar 

  27. Jat RN, Chaudhary S (2010) Radiation effects on the MHD flow near the stagnation point of a stretching sheet. Z Angew Math Phys 61:1151–1154

    Article  MathSciNet  Google Scholar 

  28. Mahapatra TR, Nandy SK (2013) Stability of dual solutions in stagnation-point flow and heat transfer over a porous shrinking sheet with thermal radiation. Meccanica 48:23–32

    Article  MathSciNet  Google Scholar 

  29. Ingham DB, Pop I (1998) Transport phenomena in porous media. Elsevier, UK

    Google Scholar 

  30. Kuznetsov AV (2000) Analytical studies of forced convection in partly porous configurations. In: Vafai K (ed) Handbook of porous media. Marcel Dekker, New York

    Google Scholar 

  31. Vafai K (2005) Handbook of porous media, 2nd edn. Taylor & Francis, New York

    Book  Google Scholar 

  32. Nield DA, Bejan A (2012) Convection in porous media, 4th edn. Springer, New York

    Google Scholar 

  33. Bejan A (2013) Convection heat transfer, 4th edn. Wiley, New York

    Book  Google Scholar 

  34. Vafai K, Kim SJ (1990) Fluid mechanics of the interface region between a porous medium and a fluid layer—an exact solution. Int J Heat Fluid Flow 11:254–256

    Article  Google Scholar 

  35. Huang PC, Vafai K (1994) Analysis of flow and heat transfer over an external boundary covered with a porous substrate. ASME J Heat Transf 116:768–771

    Article  Google Scholar 

  36. Ishak A, Nazar R, Arifin NM, Pop I (2008) Dual solutions in mixed convection flow near a stagnation point on a vertical porous plate. Int J Therm Sci 47:417–422

    Article  Google Scholar 

  37. Rosali H, Ishak A, Pop I (2011) Stagnation point flow and heat transfer over a stretching/shrinking sheet in a porous medium. Int Commun Heat Mass Transf 38:1029–1032

    Article  Google Scholar 

  38. Mukhopadhyay S, Layek GC (2012) Effects of variable fluid viscosity on flow past a heated stretching sheet embedded in a porous medium in presence of heat source/sink. Meccanica 47:863–876

    Article  MathSciNet  Google Scholar 

  39. Chaudhary S, Kumar P (2014) MHD forced convection boundary layer flow with a flat plate and porous substrate. Meccanica 49:69–77

    Article  MathSciNet  Google Scholar 

  40. Khader MM, Megahed AM (2014) Numerical solution for the flow and heat transfer due to a permeable stretching surface embedded in a porous medium with a second-order slip and viscous dissipation. Eur Phys J Plus 129:1–10

    Article  Google Scholar 

  41. Cortell R (2005) Flow and heat transfer of a fluid through a porous medium over a stretching surface with internal heat generation/absorption and suction/blowing. Fluid Dyn Res 37:231–245

    Article  ADS  Google Scholar 

  42. Elbashbeshy EMA, Emam TG (2011) Effects of thermal radiation and heat transfer over an unsteady stretching surface embedded in a porous medium in the presence of heat source or sink. Therm Sci 15:477–485

    Article  Google Scholar 

  43. Brewster MQ (1992) Thermal radiative transfer and properties. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Chaudhary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, S., Choudhary, M.K. & Sharma, R. Effects of thermal radiation on hydromagnetic flow over an unsteady stretching sheet embedded in a porous medium in the presence of heat source or sink. Meccanica 50, 1977–1987 (2015). https://doi.org/10.1007/s11012-015-0137-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0137-9

Keywords

Navigation