Skip to main content
Log in

Vibrations of an elastic rod on a viscoelastic foundation of complex fractional Kelvin–Voigt type

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

We consider vibrations of an elastic rod loaded by axial force of constant intensity and positioned on a viscoelastic foundation of complex order fractional derivative type. The solution to the problem is obtained by the separation of variables method. The critical value of axial force, guaranteeing stability, is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Aranda-Ruiz J, Loya J, Fernández-Sáez J (2012) Bending vibrations of rotating nonuniform nanocantilevers using the Eringen nonlocal elasticity theory. Compos Struct 94:2990–3001

    Article  Google Scholar 

  2. Atanackovic TM, Stankovic B (2004) Stability of an elastic rod on a fractional derivative type of foundation. J Sound Vib 227:149–161

    Article  ADS  Google Scholar 

  3. Atanackovic TM (1997) Stability theory of elastic rods. World Scientific, New Jersay

    MATH  Google Scholar 

  4. Atanackovic TM, Janev M, Konjik S, Pilipovic S, Zorica D (2014a) Expansion formula for fractional derivatives in variational problems. J Math Anal Appl 409:911–924

    Article  MATH  MathSciNet  Google Scholar 

  5. Atanackovic,TM, Konjik S, Pilipovic S, Zorica D (2014b) Complex order fractional derivatives in viscoelasticity. Preprint ArXiv:1407.8294v1, 19 pp

  6. Atanackovic TM, Pilipovic S, Stankovic B, Zorica D (2014c) Fractional calculus with applications in mechanics: vibrations and diffusion processes. Wiley-ISTE, London

    Book  Google Scholar 

  7. Baclic BS, Atanackovic TM (2000) Stability and creep of a fractional derivative order viscoelastic rod. Bulletin de l’Académie Serbe des Sciences et des Arts, Sciences Mathématiques 121:115–131

    MATH  MathSciNet  Google Scholar 

  8. Chen WF, Atsuta T (1976) Theory of beam-columns: in-plane behavior and design, vol 1. McGraw-Hill, New York

    Google Scholar 

  9. Deng J, Xie WC, Pandey MD (2014) Stochastic stability of a fractional viscoelastic column under bounded noise excitation. J Sound Vib 333:1629–1643

    Article  ADS  Google Scholar 

  10. Dikmen U (2005) Modeling of seismic wave attenuation in soil structures using fractional derivative scheme. J Balk Geophys Soc 8:175–188

    Google Scholar 

  11. Dost S, Glockner PG (1982) On the dynamic stability of viscoelastic perfect column. Int J Solids Struct 18:587–596

    Article  MATH  Google Scholar 

  12. Floris C (2011) Stochastic stability of a viscoelastic column axially loaded by a white noise force. Mech Res Commun 38:57–61

    Article  MATH  Google Scholar 

  13. Lei Y, Adhikari S, Friswell MI (2013) Vibration of nonlocal Kelvin–Voigt viscoelastic damped Timoshenko beams. Int J Eng Sci 66–67:1–13

    Article  MathSciNet  Google Scholar 

  14. Li C, Lim CW, Yu JL, Zeng QC (2011) Analytical solutions for vibration of simply supported nonlocal nanobeams with an axial force. Int J Struct Stab Dyn 11:257–271

    Article  MATH  MathSciNet  Google Scholar 

  15. Li GG, Zhu ZY, Cheng CJ (2001) Dynamical stability of viscoelastic column with fractional derivative constitutive relation. Appl Math Mech 22:294–303

    Article  MATH  Google Scholar 

  16. Makris N, Constantinou MC (1991) Fractional-derivative Maxwell model for viscous dampers. J Struct Eng 117:2708–2724

    Article  Google Scholar 

  17. Makris N, Constantinou MC (1992) Spring-viscous damper systems for combined seismic and vibration isolation. Earthq Eng Struct Dynam 21:649–664

    Article  Google Scholar 

  18. Makris N, Constantinou MC (1993) Models of viscoelasticity with complex-order derivatives. J Eng Mech 119:1453–1464

    Article  Google Scholar 

  19. Merdan M, Gökdoğan A, Yildirim A (2013) On numerical solution to fractional non-linear oscillatory equations. Meccanica 48:1201–1213

    Article  MATH  MathSciNet  Google Scholar 

  20. Paola MD, Pinnola FP, Zingales M (2013) A discrete mechanical model of fractional hereditary materials. Meccanica 48:1573–1586

    Article  MATH  MathSciNet  Google Scholar 

  21. Rossikhin YA, Shitikova MV, Shcheglova T (2009) Forced vibrations of a nonlinear oscillator with weak fractional damping. J Mech Mater Struct 4:1619–1636

    Article  Google Scholar 

  22. Rossikhin YA, Shitikova MV, Shcheglova T (2010) Analysis of free vibrations of a viscoelastic oscillator via the models involving several fractional parameters and relaxation/retardation times. Comput Math Appl 59:1727–1744

    Article  MATH  MathSciNet  Google Scholar 

  23. Samko SG, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives. Gordon and Breach, Amsterdam

    MATH  Google Scholar 

  24. Shih YS, Yeh ZF (2005) Dynamic stability of a viscoelastic beam with frequency-dependent modulus. Int J Solids Struct 42:2145–2159

    Article  MATH  Google Scholar 

  25. Wang CM, Zhang YY, He XQ (2007) Vibration of nonlocal Timoshenko beams. Nanotechnology 18:105,401–105,409

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the Serbian Ministry of Education and Science Projects 174005, 174024, III44003 and TR32035, as well as by the Secretariat for Science of Vojvodina Project 114-451-1084.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dusan Zorica.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atanackovic, T.M., Janev, M., Konjik, S. et al. Vibrations of an elastic rod on a viscoelastic foundation of complex fractional Kelvin–Voigt type. Meccanica 50, 1679–1692 (2015). https://doi.org/10.1007/s11012-015-0128-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0128-x

Keywords

Navigation