Skip to main content
Log in

Wave propagation in an incompressible transversely isotropic thermoelastic solid

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In the present paper, the equations of motion and heat conduction equation of an incompressible transversely isotropic thermoelastic solid are formulated in view of Lord and Shulman theory on generalized thermoelastcity. The equations of motion and heat conduction equation reduce to two coupled equations in temperature and a scalar function depending on displacement. Plane harmonic solution of these coupled equations shows the existence of two homogeneous plane waves. These coupled equations are also solved for surface wave solutions which satisfy the required radiation conditions in the half-space. The surface wave solutions satisfy the appropriate boundary conditions at traction-free thermally insulated or isothermal surface of half-space and a secular equation of Rayleigh wave speed is obtained for thermally insulated case and isothermal case. For thermally insulated case, the numerical values of non-dimensional speed of Rayleigh wave are computed by using Iteration method. The wave speeds of plane waves and Rayleigh wave are illustrated graphically to observe the effects of transverse isotropy, material constants, frequency, angle of propagation and thermal relaxation in time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Biot MA (1956) Thermoelasticity and irreversible thermodynamics. J Appl Phys 2:240–253

    Article  MathSciNet  ADS  Google Scholar 

  2. Green AE, Lindsay KA (1972) Thermoelasticity. J Elast 2:1–7

    Article  MATH  Google Scholar 

  3. Lord H, Shulman Y (1967) A generalised dynamical theory of thermoelasticity. J Mech Phys Solids 15:299–309

    Article  MATH  ADS  Google Scholar 

  4. Ignaczak J, Ostoja-Starzewski M (2009) Thermoelasticity with finite wave speeds. Oxford University Press, Oxford

    Book  Google Scholar 

  5. Hetnarski RB, Ignaczak J (1999) Generalized thermoelasticity. J Therm Stress 22:451–476

    Article  MathSciNet  Google Scholar 

  6. Rayleigh L (1885) On waves propagated along the plane surface of an elastic solid. Proc R Soc Lond Ser A 17:4–11

    MATH  Google Scholar 

  7. Anderson DL (1961) Elastic wave propagation in layered anisotropic media. J Geophys Res 66:2953–2963

    Article  MathSciNet  ADS  Google Scholar 

  8. Stoneley R (1963) The propagation of surface waves in an elastic medium with orthorhombic symmetry. Geophys J R Astron Soc 8:176–186

    Article  Google Scholar 

  9. Crampin S, Taylor DB (1971) The propagation of surface waves in anisotropic media. Geophys J R Astron Soc 25:71–87

    Article  ADS  Google Scholar 

  10. Chadwick P, Smith GD (1977) Foundations of the theory of surface waves in anisotropic elastic materials. Adv Appl Mech 17:303–376

    MATH  Google Scholar 

  11. Dowaikh MA, Ogden RW (1990) On surface waves and deformations in a pre-stressed incompressible elastic solid. IMA J Appl Math 44:261–284

    Article  MATH  MathSciNet  Google Scholar 

  12. Nair S, Sotiropoulos DA (1999) Interfacial waves in incompressible monoclinic materials with an interlayer. Mech Mater 31:225–233

    Article  Google Scholar 

  13. Destrade M (2001) Surface waves in orthotropic incompressible materials. J Acoust Soc Am 110:837–840

    Article  ADS  Google Scholar 

  14. Ting TCT (2002) An explicit secular equation for surface waves in an elastic material of general anisotropy. Q J Mech Appl Math 55:297–311

    Article  MATH  Google Scholar 

  15. Ogden RW, Vinh PC (2004) On Rayleigh waves in incompressible orthotropic elastic solids. J Acoust Soc Am 115:530–535

    Article  ADS  Google Scholar 

  16. Ogden RW, Singh B (2011) Propagation of waves in an incompressible transversely isotropic elastic solid with initial stress: Biot revisited. J Mech Mater Struct 6:453–477

    Article  Google Scholar 

  17. Vinh PC, Linh NTK (2013) Rayleigh waves in an incompressible elastic half-space overlaid with a water layer under the effect of gravity. Meccanica 48:2051–2060

    Article  MATH  MathSciNet  Google Scholar 

  18. Shams M, Ogden RW (2014) On Rayleigh-type surface waves in an initially stressed incompressible elastic solid. IMA J Appl Math 79:360–372

    Article  MATH  MathSciNet  Google Scholar 

  19. Ogden RW, Singh B (2014) The effect of rotation and initial stress on the propagation of waves in a transversely isotropic elastic solid. Wave Motion 51:1108–1126

    Article  MathSciNet  Google Scholar 

  20. Lockett FJ (1958) Effect of the thermal properties of a solid on the velocity of Rayleigh waves. J Mech Phys Solids 7:71–75

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Flavin JN (1962) Thermoelastic Rayleigh waves in a prestressed medium. Math Proc Camb Phil Soc 58:532–538

    Article  MathSciNet  ADS  Google Scholar 

  22. Chadwick P, Windle DW (1964) Propagation of Rayleigh waves along isothermal and insulated boundaries. Proc R Soc Lond A 280:47–71

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Chandrasekharaiah DS, Srikantaiah KR (1984) On temperature rate dependent thermoelastic Rayleigh waves in half-space. Gerlands Beitrage Zur Geophysik 93:133–141

    Google Scholar 

  24. Sharma JN, Singh H (1985) Thermoelastic surface waves in a transversely isotropic half-space with thermal relaxations. Indian J Pure Appl Math 16:1202–1219

    MATH  MathSciNet  Google Scholar 

  25. Dawn NC, Chakraborty SK (1988) On Rayleigh waves in Green-Lindsay model of generalized thermoelastic media. Indian J Pure Appl Math 20:276–283

    Google Scholar 

  26. Abd-Alla AM, Ahmed SM (1996) Rayleigh waves in an orthotropic thermoelastic medium under gravity field and initial stress. Earth Moon Planets 75:185–197

    Article  MATH  ADS  Google Scholar 

  27. Abouelregal AE (2011) Rayleigh waves in a thermoelastic solid half space using dual-phase-lag model. Int J Eng Sci 49:781–791

    Article  MATH  MathSciNet  Google Scholar 

  28. Singh B (2013) Propagation of Rayleigh wave in a two-temperature generalized thermoelastic solid half-space. ISRN Geophys Article ID 857937. doi:10.1155/2013/857937

  29. Chirita S (2013) Thermoelastic surface waves on an exponentially graded half-space. Mech Res Commun 49:27–35

    Article  Google Scholar 

  30. Chirita S (2013) On the Rayleigh surface waves on an anisotropic homogeneous thermoelastic half-space. Acta Mechanica 224:657–674

    Article  MATH  MathSciNet  Google Scholar 

  31. Leslie DJ, Scott NH (1998) Incompressibility at uniform temperature or entropy in isotropic thermoelasticity. Q J Mech Appl Math 51:191–212

    Article  MATH  MathSciNet  Google Scholar 

  32. Leslie DJ, Scott NH (2000) Wave stability for incompressibility at uniform temperature or entropy in generalized isotropic thermoelasticity. Q J Mech Appl Math 53:1–25

    Article  MATH  MathSciNet  Google Scholar 

  33. Gultop T (2002) Weak shock waves in constrained thermoelastic solids. Arch Appl Mech 72:511–521

    Article  Google Scholar 

  34. Salinkov V, Scott NH (2006) Thermoelastic waves in a constrained isotropic plate: incompressibility at uniform temperature. Q J Mech Appl Math 59:359–375

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baljeet Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B. Wave propagation in an incompressible transversely isotropic thermoelastic solid. Meccanica 50, 1817–1825 (2015). https://doi.org/10.1007/s11012-015-0126-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0126-z

Keywords

Navigation