Skip to main content
Log in

Response of frictional contact problems in thermo-rheologically complex structures

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper presents a comprehensive computational model for predicting the nonlinear response of frictional viscoelastic contact systems under thermo-mechanical loading and experience geometrical nonlinearity. The nonlinear viscoelastic constitutive model is expressed by an integral form of a creep function, whose elastic and time-dependent properties change with stresses and temperatures. The thermo-viscoelastic behavior of the contacting bodies is assumed to follow a class of thermo-rheologically complex materials. An incremental-recursive formula for solving the nonlinear viscoelastic integral equation is derived. Such formula necessitates data storage only from the previous time step. The contact problem as a variational inequality constrained model is handled using the Lagrange multiplier method for exact satisfaction of the inequality contact constraints. A local nonlinear friction law is adopted to model friction at the contact interface. The material and geometrical nonlinearities are modeled in the framework of the total Lagrangian formulation. The developed model is verified using available benchmarks. The effectiveness and accuracy of the developed computational model is validated by solving two thermo-mechanical contact problems with different natures. Moreover, obtained results show that the mechanical properties and the class of thermo-rheological behavior of the contacting bodies as well as the coefficient of friction have significant effects on the contact response of nonlinear thermo-viscoelastic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Christensen R (1982) Theory of viscoelasticity: an introduction. Academic Press, New York

  2. Peretz D, Weitsman Y (1983) The nonlinear thermoviscoelastic characterizations of FM-73 adhesives. J Rheol 27:97–114

    Article  ADS  Google Scholar 

  3. Harper B, Weitsman Y (1985) Characterization method for a class of thermorheologically complex materials. J Rheol 29:49–66

    Article  ADS  Google Scholar 

  4. Taylor RL, Pister KS, Goudreau GL (1970) Thermomechanical analysis of viscoelastic solids. Int J Numer Methods Eng 2:45–59

    Article  MATH  Google Scholar 

  5. Feng WW (1992) A recurrence formula for viscoelastic constitutive equations. Int J Nonlinear Mech 27:675–678

    Article  MATH  Google Scholar 

  6. Kennedy TC (1998) Nonlinear viscoelastic analysis of composite plates and shells. Compos Struct 41:265–272

    Article  Google Scholar 

  7. Ghayesh M, Khadem S (2008) Rotary inertia and temperature effects on nonlinear vibration, steady-state response and stability of an axially moving beam with time-dependent velocity. Int J Mech Sci 50:389–404

    Article  MATH  Google Scholar 

  8. Areias P, Matous K (2008) Finite element formulation for modeling nonlinear viscoelastic elastomers. Comput Methods Appl Mech Eng 197:4702–4717

    Article  MATH  ADS  Google Scholar 

  9. Guedes RM (2010) Nonlinear viscoelastic analysis of thick-walled cylindrical composite pipes. Int J Mech Sci 52:1064–1073

    Article  Google Scholar 

  10. Schapery RA (1969) On the characterization of nonlinear viscoelastic materials. Polym Eng Sci 9:295–310

    Article  Google Scholar 

  11. Schapery RA (1997) Nonlinear viscoelastic and viscoplastic constitutive equations based on thermodynamics. Mech Time-Depend Mater 1:209–240

    Article  ADS  Google Scholar 

  12. Touati D, Cederbaum G (1997) Stress relaxation of nonlinear thermoviscoelastic materials predicted from known creep. Mech Time-Depend Mater 1:321–330

    Article  ADS  Google Scholar 

  13. Lai J, Bakker A (1996) 3-D Schapery representation for nonlinear viscoelasticity and finite element implementation. Comput Mech 18:182–191

    Article  MATH  Google Scholar 

  14. Haj-Ali RM, Muliana AH (2004) Numerical finite element formulation of the Schapery non-linear viscoelastic material model. Int J Numer Methods Eng 59:25–45

    Article  MATH  Google Scholar 

  15. Muliana AH (2008) Multi-scale framework for the thermo-viscoelastic analyses of polymer composites. Mech Res Commun 35:89–95

    Article  MATH  Google Scholar 

  16. Payette G, Reddy JN (2010) Nonlinear quasi-static finite element formulations for viscoelastic Euler–Bernoulli and Timoshenko beams. Int J Numer Methods Biomed Eng 26:1736–1755

    MathSciNet  MATH  Google Scholar 

  17. Christensen RA (1980) Nonlinear theory of viscoelasticity for application to elastomers. American Society of Mechanical Engineers, Winter Annual Meeting, Chicago

    Google Scholar 

  18. Bonet J (2001) Large strain viscoelastic constitutive models. Int J Solids Struct 38:2953–2968

    Article  MATH  Google Scholar 

  19. Vaz MA, Caire M (2010) On the large deflections of linear viscoelastic beams. Int J Nonlinear Mech 45(1):75–81

    Article  ADS  Google Scholar 

  20. Holzapfel G, Reiter G (1995) Fully coupled thermomechanical behaviour of viscoelastic solids treated with finite elements. Int J Eng Sci 33:1037–1058

    Article  MATH  Google Scholar 

  21. Johnson AR, Chen TK (2005) Approximating thermo-viscoelastic heating of largely strained solid rubber components. Comput Methods Appl Mech Eng 194:313–325

    Article  MATH  ADS  Google Scholar 

  22. Holzapfel GA, Simo JC (1996) A new viscoelastic constitutive model for continuous media at finite thermomechanical changes. Int J Solids Struct 33:3019–3034

    Article  MATH  Google Scholar 

  23. Reese S, Govindjee S (1997) Theoretical and numerical aspects in the thermo-viscoelastic material behaviour of rubber-like polymers. Mech Time-Depend Mater 1:357–396

    Article  ADS  Google Scholar 

  24. Chazal C, Pitti RM (2010) Modelling of ageing viscoelastic materials in three dimensional finite element approach. Meccanica 45(3):439–441

    Article  MathSciNet  MATH  Google Scholar 

  25. Gupta AK, Kumar L (2008) Thermal effect on vibration of non-homogenous visco-elastic rectangular plate of linearly varying thickness. Meccanica 43(1):47–54

  26. Mahmoud FF, El-Shafei AG, Attia MA (2013) Analysis of thermo-rheologically complex structures with geometrical nonlinearity. Struct Eng Mech 47(1):27–44

    Article  Google Scholar 

  27. Chen WH, Chang CM, Yeh JT (1991) Finite element analysis of viscoelastic contact problems with friction. In: The fifteenth national conference on theoretical and applied mechanics, Tainan, Taiwan, ROC, pp 713–720

  28. Chang CM, Chen WH (1996) Thermoviscoelastic contact analysis with friction by an incremental thermal relaxation procedure. Comput Methods Appl Mech Eng 130:151–162

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. Campo M, Fernandez J (2005) Numerical analysis of a quasistatic thermoviscoelastic frictional contact problem. Comput Mech 35:459–469

    Article  MathSciNet  MATH  Google Scholar 

  30. Copetti M, French D (2003) Numerical solution of a thermoviscoelastic contact problem by a penalty method. SIAM J Numer Anal 41:1487–1504

    Article  MathSciNet  MATH  Google Scholar 

  31. Copetti M, Fernandez J (2011) Finite element approximation to a contact problem for a nonlinear thermoviscoelastic beam. J Math Anal Appl 383:506–521

    Article  MathSciNet  MATH  Google Scholar 

  32. Cakmak UD, Schoberl T, Major Z (2012) Nanoindentation of polymers. Meccanica 47(3):707–718

    Article  Google Scholar 

  33. Mahmoud FF, El-Shafei AG, Attia MA (2011) Analysis of thermoviscoelastic frictionless contact of layered bodies. Finite Elem Anal Des 47:307–318

    Article  Google Scholar 

  34. Mahmoud FF, El-Shafei AG, Abdelrahman AA, Attia MA (2013) Modeling of nonlinear viscoelastic contact problems with large deformations. Appl Math Model 37:6730–6745

    Article  MathSciNet  Google Scholar 

  35. Fung YC, Tong P (2001) Classical and computational solid mechanics. World Scientific Publishing Company, Singapore

  36. Oden J, Pires E (1984) Algorithms and numerical results for finite element approximations of contact problems with non-classical friction laws. Comput Struct 19:137–147

    Article  Google Scholar 

  37. Zavarise G, Lorenzis LD (2009) A modified node-to-segment algorithm passing the contact patch test. Int J Numer Methods Eng 79(4):379–416

    Article  MATH  Google Scholar 

  38. Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics, 6th edn. Elsevier, Oxford

  39. Mahmoud FF, EI-Shafei AG, Al-Shorbagy AE, Abdel Rahman AA (2008) A numerical solution for quasistatic viscoelastic frictional contact problems. J Tribol 130(1):011001

  40. Pantuso D, Bathe KJ, Bouzinov PA (2000) A finite element procedure for the analysis of thermo-mechanical solids in contact. Comput Struct 75:551–573

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. Attia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attia, M.A., El-Shafei, A.G. & Mahmoud, F.F. Response of frictional contact problems in thermo-rheologically complex structures. Meccanica 49, 2879–2900 (2014). https://doi.org/10.1007/s11012-014-0035-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-014-0035-6

Keywords

Navigation