Skip to main content
Log in

A mechanical saffron flower harvesting system

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This work is concerned with a mechanical system designed to harvest Crocus sativus L. (saffron) flowers. The system is conceived as a shoulder portable device with two main parts: the former is specifically designed to detach the flower containing three stigmas, which are the costly final product, while the second one collects the detached flower through a vacuum collector. This paper describes the operating principle of the device that imitates one of the procedures followed by the pickers but with the peculiarity that it harvests the flower without separating it from its leaves, which is a significant advantage since it simplifies the mechanical detachment of the flower. Experimental laboratory tests were carried out on the gripper prototype in order to investigate the dynamic behaviour of the detaching and harvesting device. The experimental activity is described in the paper and the experimental results are discussed to know the gripper prototype performances and to define the future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Harrell RC, Adsit PD, Mumlla RD, Slaughter DC (1990) Robotic picking of citrus. Robotica 8(4):269–278

    Article  Google Scholar 

  2. Ceccarelli M, Figliolini G, Ottaviano E, Mata A, Criado E (2000) Designing a robotic gripper for harvesting horticulture products. Robotica 18(1):105–111

    Article  Google Scholar 

  3. Giorgio F, Rea P (2006) Overall design of Ca.U.M.Ha. Robotic hand for harvesting horticulture products. Robotica 24(3):329–331

    Article  Google Scholar 

  4. Pilarski T, Happold TM, Pangels H, Ollis M, Fitzpatrick K, Stentz A (2002) The demeter system for automated harvesting. Auton Robots 13(1):9–20

    Article  MATH  Google Scholar 

  5. Kondo N, Monta M (1999) Fruit harvesting robotics. J Robot Mechatron 11(4):321–325

    Google Scholar 

  6. Eduardo BC, Esquivel JZ (2007) Differential and inverse kinematics of robot devices using conformal geometric algebra. Robotica 25(1):43–61

    Article  Google Scholar 

  7. Mantriota G (2007) Optimal grasp of vacuum grippers with multiple suction cup’s. Mech Mach Theory 42(1):18–33

    Article  MATH  Google Scholar 

  8. Davis S, Gray JO, Caldwell DG (2008) An end effector based on the Bernoulli principle for handling sliced fruit and vegetables. Robotics Comput-Integr Manuf 24(2):249–257

    Article  Google Scholar 

  9. Erzincanli F, Sharp JM (1998) Design and operational considerations of a non-contact robotic handling system for non-rigid materials. Int J Mach Tools Manuf 38(4):353–361

    Article  Google Scholar 

  10. Saadat M, Nan P (2002) Industrial applications of automatic manipulation of flexible materials. Ind Robot 29(5):434–442

    Article  Google Scholar 

  11. Ozcelik B, Erzincanli F (2002) A non-contact end effector for the handling of garments. Robotica 20(4):447–450

    Article  Google Scholar 

  12. Carello M, Ferraresi C and Visconte C, (2003) A new flexible pneumatic finger for a fruit-harvesting hand. In: 7th International symposium on fluid control, measurement and visualization, Sorrento, Aug 25–28

  13. Ferraresi C, Manuello Bertetto A (1995) Self-adaptive three-fingered robot hand with tactile sensors. In: Proceedings of the fourth International Symposium of Measurement and Control in Robotics, Slovakia, 1995, June 12–16, , pp 275–280

  14. Gracia L, Perez-Vidal C, Gracia-Lopez C (2009) Automated cutting system to obtain the stigmas of the saffron flower. Biosyst Eng 104(1):8–17

    Article  Google Scholar 

  15. Ruggiu M, Manuello Bertetto A (2006) A mechanical device for harvesting Crocus sativus (Saffron) flowers. Appl Eng Agric Am Soc Agric Biol Eng 22(4):491–498

    Google Scholar 

  16. Manuello Bertetto A, Falchi C, Pinna R, Ricciu R, (2010) An integrated device for saffron flowers detaching and harvesting. In: IEEE 19th International Workshop on Robotics in Alpe-Adria-Danube Region (RAAD) Budapest Hungary, June 24–26

  17. ISO 3632-1- (2003) Saffron (Crocus sativus Linnaeus)

  18. Williames G A (2006) Flower harvesters—U.S. Patent No. 4761942

  19. Kondo N, Monta M (1999) Chrysanthemum cutting sticking robot system. J Robot Mechatron 11(3):220–224

    Google Scholar 

  20. Erriu N, Manuello Bertetto A, Ruggiu M (2006) A two-finger device for saffron flower harvesting. Appl Math Mech Ser Acta Tecnica Napocensis 49(2):45–50

    Google Scholar 

  21. Capecchi D, Drago A (2005) On Lagrange’s history of mechanics. Meccanica 40:19–33

    Article  MathSciNet  MATH  Google Scholar 

  22. Ceccarelli M (2006) Fundamentals of mechanics of robotic manipulation. Meccanica 41:233–236

    Article  Google Scholar 

  23. Liu Y, Qin D, Jiang H, Liu C, Zhang Y (2011) Clutch torque formulation and calibration for dry dual clutch transmissions. Mech Mach Theory 46:218–227

    Article  MATH  ADS  Google Scholar 

  24. Galvagno E, Velardocchia M, Vigliani A (2011) Dynamic and kinematic model of a dual clutch transmission. Mech Mach Theory 46:794–805

    Article  MATH  Google Scholar 

  25. Tran XB, Yanada H (2013) Dynamic friction behaviors of pneumatic cylinders. Intell Control Autom 4:180–190

    Article  Google Scholar 

  26. Belforte G, Mattiazzo G, Mauro S, Tokashiki LR (2003) Measurement of friction force in pneumatic cylinders. Tribotest J 10–1(10):33–48

    Article  Google Scholar 

  27. Belforte G, Manuello Bertetto A, Mazza L (2012) Test rig for friction force measurements in pneumatic components and seals. Proc Inst Mech Eng J 227(1):43–59. doi:10.1177/1350650112453522

    Article  Google Scholar 

  28. Manuello Bertetto A, Mazza L (2000) Contact analysis and wear in two pneumatic reciprocating seals. Int J Mech Control 1(1):43–49

    Google Scholar 

  29. Manuello Bertetto A, Falchi C, Pinna R, Ricciu R (2010) Laboratory test for an integrated device in agricultural applications. Int J Mech Control 11(2):105–112

    Google Scholar 

  30. Manuello Bertetto A, Ricciu R (2012) Mechanical harvester and double flow cyclone separator: prototypes to improve saffron spice productions. Int J Mech Control 13(1):9–14

    Google Scholar 

  31. Manuello Bertetto A, Ricciu R (2012) Mechanization in harvesting saffron: an opportunity for economic development in Sardinia. In: ABSRC Proceedings, Olbia, , Sept 2012, ISBN 978-961-92917-4-0

  32. Gambella F, Paschino F, Manuello Bertetto A (2013) Perspectives in the mechanization of saffron (Crocus sativus L.). Int J Mech Control 14(2):3–8

    Google Scholar 

Download references

Acknowledgments

This research activity was funded by the Italian Ministry of Research (MIUR), by Sardegna Ricerche and by the Provincia del Medio Campidano in Sardinia Region, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Manuello Bertetto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manuello Bertetto, A., Ricciu, R. & Badas, M.G. A mechanical saffron flower harvesting system. Meccanica 49, 2785–2796 (2014). https://doi.org/10.1007/s11012-014-0026-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-014-0026-7

Keywords

Navigation