Skip to main content
Log in

Riemann solution for ideal isentropic magnetogasdynamics

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In the present paper, we study the Riemann problem for quasilinear hyperbolic system of partial differential equations governing the one dimensional ideal isentropic magnetogasdynamics with transverse magnetic field. We discuss the properties of rarefaction waves, shocks and contact discontinuities. Differently from single equation methods rooted in the ideal gasdynamics, the new approach is based on the system of two nonlinear equations imposing the equality of total pressure and velocity, assuming as unknowns the two values of densities, on both sides of the contact discontinuity. Newton iterative method is used to obtain densities. The resulting exact solver is implemented with the examples of general applicability of the proposed approach. For comparisons with exact solution we also shown numerical results obtained by the total variation diminishing slope limiter centre scheme. It is shown that both analytical and numerical results demonstrate the broad applicability and robustness of the new Riemann solver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cabannes H (1970) Theoretical magnetofluid dynamics, in applied mathematics and mechanics, vol 13. Academic Press, New York

    Google Scholar 

  2. Gundersen R (1964) Linearized analysis of one-dimensional magnetohydrodynamic flows. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  3. Landau LD, Lifshitz EM (2005) Electrodynamics of continuous media, 2nd edn. Elsevier, Oxford

    Google Scholar 

  4. Myong RS, Roe PL (1997) Shock waves and rarefaction waves in magnetohydrodynamics part 1. A model system. J Plasma Phys 58:485–519

    Article  ADS  Google Scholar 

  5. Myong RS, Roe PL (1997) Shock waves and rarefaction waves in magnetohydrodynamics part 2. The MHD system. J Plasma Phys 58:521–552

    Article  ADS  Google Scholar 

  6. Shen C (2011) The limits of Riemann solutions to the isentropic magnetogasdynamics. Appl Math Lett 24:1124–1129

    Article  MATH  MathSciNet  Google Scholar 

  7. Singh LP, Husain A, Singh M (2011) A self-similar solution of exponential shock waves in non-ideal magnetogasdynamics. Meccanica 46:437–445

    Article  MATH  MathSciNet  Google Scholar 

  8. Toro EF (1997) Riemann solvers and numerical methods for fluid dynamics, 2nd edn. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  9. Courant R, Friedrichs KO (1999) Supersonic flow and shock waves. Interscience, New York

    Google Scholar 

  10. Glimm J (1965) Solutions in the large for nonlinear hyperbolic systems of equations. Commun Pure Appl Math 18:697–715

    Article  MATH  MathSciNet  Google Scholar 

  11. Lax PD (1957) Hyperbolic systems of conservation laws II. Commun Pure Appl Math 10:537–566

    Article  MATH  MathSciNet  Google Scholar 

  12. Smoller J (1994) Shock waves and reaction-diffusion equations. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  13. Jena J, Singh R (2013) Existence and interaction of acceleration wave with a characteristic shock in transient pinched plasma. Meccanica 48:733–738

    Article  MathSciNet  Google Scholar 

  14. Hu Y, Sheng W (2013) The Riemann problem of conservation laws in magnetogasdynamics. Commun Pure Appl Anal 12:755–769

    Article  MATH  MathSciNet  Google Scholar 

  15. Bira B, Raja Sekhar T (2013) Exact solutions to magnetogasdynamics using Lie point symmetries. Meccanica 48:1023–1029

    Article  MathSciNet  Google Scholar 

  16. Raja Sekhar T, Sharma VD (2012) Solution to the Riemann problem in a one-dimensional magnetogasdynamic flow. Int J Comput Math 89:200–216

    Article  MATH  MathSciNet  Google Scholar 

  17. Balsara DS (1998) Linearized formulation of the Riemann problem for adiabatic and isothermal magnetohydrodynamics. Astrophys J Suppl Ser 116:119–131

    Article  ADS  Google Scholar 

  18. Bouchut F, Klingenberg C, Waagan K (2007) A multiwave approximate Riemann solver for ideal MHD based on relaxation. I: theoretical framework. Numer Math 108:7–42

    Article  MATH  MathSciNet  Google Scholar 

  19. Bouchut F, Klingenberg C, Waagan K (2010) A multiwave approximate Riemann solver for ideal MHD based on relaxation II: numerical implementation with 3 and 5 waves. Numer Math 115:647–679

    Article  MATH  MathSciNet  Google Scholar 

  20. Dai W, Woodward PR (1995) A simple Riemann solver and high-order Godunov schemes for hyperbolic systems of conservation laws. J Comput Phys 121:51–65

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Dai W, Woodward PR (1994) An approximation Riemann solver for ideal magnetohydrodynamics. J Comput Phys 111:354–372

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Torrihon M (2003) Non-uniform convergence of finite volume schemes for Riemann problems of ideal magnetohydrodynamics. J Comput Phys 192:73–94

    Article  MathSciNet  ADS  Google Scholar 

  23. Ryu D, Jones T (1995) Numerical magnetohydrodynamics in astrophysics: algorithm and tests for one-dimensional flow. Astrophys J Lett 442:228–258

    Article  ADS  Google Scholar 

  24. Dumbser M, Toro EF (2011) On universal Osher-type schemes for general nonlinear hyperbolic conseravtion laws. Commun Comput Phys 10:635–671

    MathSciNet  Google Scholar 

  25. Glacomazzo B, Rezzolla L (2006) The exact solution of the Riemann problem in relativistic magnetohydrodynamics. J Fluid Mech 562:223–259

    Article  MathSciNet  ADS  Google Scholar 

  26. Mignone A (2007) A simple and accurate Riemann solver for isothermal MHD. J Comput Phys 225:1427–1441

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Thevand N, Daniel E, Loraud JC (1999) On high-resolution schemes for solving unsteady compressible two-phase dilute viscous flows. Int J Numer Methods Fluids 31:681–702

    Article  MATH  Google Scholar 

  28. Raja Sekhar T, Sharma VD (2010) Riemann problem and elementary wave interactions in isentropic magnetogasdynamics. Nonlinear Anal Real World Appl 11:619–636

    Article  MATH  MathSciNet  Google Scholar 

  29. Liu Y, Sun W (2013) Riemann problem and wave interactions in magnetogasdynamics. J Math Anal Appl 397:454–466

    Article  MATH  MathSciNet  Google Scholar 

  30. Toro EF, Billett S (2000) Centred TVD schemes for hyperbolic conservation laws. IMA J Numer Anal 20:47–79

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

Research support from National Board for Higher Mathematics, Department of Atomic Energy, Government of India (Ref. No. 2/48(1)/2011/-R&D II/4715) is gratefully acknowledged. The authors gratefully acknowledge the critical comments and suggestions made by the anonymous referees. We thank Dr. Dia Zeidan, School of Natural Resources Engineering and Management, German Jordanian University, Amman, Jordan, for his help in computation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Raja Sekhar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuila, S., Sekhar, T.R. Riemann solution for ideal isentropic magnetogasdynamics. Meccanica 49, 2453–2465 (2014). https://doi.org/10.1007/s11012-014-0009-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-014-0009-8

Keywords

Mathematics Subject Classification

Navigation