Advertisement

Meccanica

, Volume 50, Issue 5, pp 1205–1216 | Cite as

Photo-disintegration of the iron nucleus in fractured magnetite rocks with magnetostriction

  • A. Widom
  • J. Swain
  • Y. N. Srivastava
Acoustic and Other Forms of Energy Emissions

Abstract

There has been considerable interest in recent experiments on iron nuclear disintegrations observed when rocks containing such nuclei are crushed and fractured. The resulting nuclear transmutations are particularly strong for the case of magnetite rocks, i.e. loadstones. We argue that the fission of the iron nucleus is a consequence of photo-disintegration. The electro-strong coupling between electromagnetic fields and nuclear giant dipole resonances are central for producing observed nuclear reactions. The large electron energies produced during the fracture of piezomagnetic rocks are closely analogous to the previously discussed case of the fracture of piezoelectric rocks. In both cases electro-weak interactions can produce neutrons and neutrinos from energetic protons and electrons thus inducing nuclear transmutations. The electro-strong condensed matter coupling discussed herein represents new many body collective nuclear photo-disintegration effects.

Keywords

62.20.mm 81.40.Np 03.75.Be 14.20.Dh 

References

  1. 1.
    Carpinteri A, Borla O, Lacidogna G, Manuello A (2010) Neutron emissions in brittle rocks during compression tests. Phys Mesomech 13:264–274CrossRefGoogle Scholar
  2. 2.
    Carpinteri A, Lacidogna G, Manuello A, Borla O (2011) Energy emissions from brittle fracture: neutron measurements and geological evidences of piezonuclear reactions. Strength Fract Complex 7:13–31Google Scholar
  3. 3.
    Carpinteri A, Manuello A (2011) Geomechanical and geochemical evidence of piezonuclear fission reactions in the Earths Crust. Strain Suppl 2(47):267–281CrossRefGoogle Scholar
  4. 4.
    Carpinteri A, Chiodoni A, Manuello A, Sandrone R (2011) Compositional and microchemical evidence of piezonuclear fission reactions in rock specimens subjected to compression tests. Strain Suppl 2(47):282–292CrossRefGoogle Scholar
  5. 5.
    Carpinteri A, Manuello A (2012) An indirect evidence of piezonuclear fission reactions: geomechanical and geochemical evolution in the Earths crust. Phys Mesomech 15:37–46CrossRefGoogle Scholar
  6. 6.
    Carpinteri A, Lacidogna G, Manuello A, Borla O (2012) Piezonuclear fission reactions: evidences from microchemical analysis, neutron emission, and geological transformation. Rock Mech Rock Eng 45:445–459CrossRefADSGoogle Scholar
  7. 7.
    Carpinteri A, Lacidogna G, Borla O, Manuello A, Niccolini G (2012) Electromagnetic and neutron emissions from brittle rocks failure: experimental evidence and geological implications. Sadhana 37:59–78CrossRefGoogle Scholar
  8. 8.
    Widom A, Swain J, Srivastava YN (2013) Neutron production from the fracture of piezoelectric rocks. J Phys G Nucl Part Phys G 40:015006–015014CrossRefADSGoogle Scholar
  9. 9.
    Koshevaya S, Grimalsky V, Makarets N, Kotsarenko A, Siquieros-Alatorre J, Perez-Enriquez R, Juarez-Romero D (2008) Electromagnetic emission from magnetite plate cracking under seismic processes. Adv Geosci 14:25–28CrossRefGoogle Scholar
  10. 10.
    Swain J, Widom A, Srivastava YN (2013) Electrostrong nuclear disintegration in condensed matter. arXiv:1306.5165 [nucl-th]
  11. 11.
    Widom A, Swain J, Srivastava YN (2013) Photo-disintegration of the iron nucleus in fractured magnetite rocks with magnetostriction. arXiv:1306.6286 [physics gen-phy]
  12. 12.
    Snover KA (1986) Giant resonances in excited nuclei. Annu Rev Nucl Part Sci 36:545–603CrossRefADSGoogle Scholar
  13. 13.
    Brink DM (2008) Giant resonances in excited nuclei. Talk presented at the workshop on chaos and collectivity in many body systems at the PMIPKS, Dresden, 5–8 Mar 2008, pp. 1–5Google Scholar
  14. 14.
    Ishkhanov BS, Kapitonov IM, Varlamov VV (2003) Proceedings of the 10th international seminar electromagnetic interactions of nuclei at low and medium energies, Moscow, 16–18 Apr 2003. Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, pp 5–22. ISBN 5-944274-012-7, 2004Google Scholar
  15. 15.
    Varlamov AV, Varlamov VV, Rudenko DS, Stepanov ME (1999) Atlas of giant dipole resonances: parameters and graphs of photo-nuclear reaction cross sections. International Nuclear Data Committee, INDC(NDS)-394 Distr. GN+NMGoogle Scholar
  16. 16.
    Liu JC et al (1997) Calculations of the giant dipole resonance photoneutrons using a coupled EGS4 Morse code. Radiat Prot Dosim 70:49–54CrossRefGoogle Scholar
  17. 17.
    Mao X et al (1996) Giant dipole resonance neutron yields produced by electrons as a function of target material and thickness. Health Phys 70:207–214CrossRefGoogle Scholar
  18. 18.
    Thomas W (1925) ber die Zahl der Dispersionselektronen, die einem stationren Zustande zugeordnet sind. (Vorlufige Mitteilung). Naturwissenschaften 13:627–627CrossRefADSzbMATHGoogle Scholar
  19. 19.
    Kuhn W (1025) Uber die Gesamtstarke der von einem Zustande aus- gehenden Absorptionslinien. Z Phys 33:408–412CrossRefADSGoogle Scholar
  20. 20.
    Reiche F, Thomas W (1025) Uber die Zahl der Dispersionelektronen die einem stationaren Zustand Zugeordnet sind. Z Phys 34:510–525CrossRefADSGoogle Scholar
  21. 21.
    Migdal AB (1967) Theory of finite Fermi-systems and properties of the atomic nucleus. Willey, New YorkGoogle Scholar
  22. 22.
    Migdal AB, Voskresenskii DN, Saperstein EE, Troitskii MA (1990) Pion degrees of freedom in nuclear medium. Phys Rep 192:179–437CrossRefADSGoogle Scholar
  23. 23.
    Berestetskii VB, Lifshitz EM, Pitaevskii LP (1980) Quantum electrodynamics. Pergamon Press, OxfordGoogle Scholar
  24. 24.
    Lollioz L, Pattofatto S, Hubert O (2006) Application of piezo-magnetism for the measurement of stress during an impact. J Electr Eng 57:15–20Google Scholar
  25. 25.
    Gruerro C, Schelbert J, Bonamy D, Dolmas D (2012) Proc Natl Acad Sci USA 129:190Google Scholar
  26. 26.
    Landau LD, Lifshitz EM (1970) Theory of elasticity. Pergamon Press, OxfordGoogle Scholar
  27. 27.
    Freund LB (1998) Dynamic fracture mechanics. Cambridge University Press, CambridgeGoogle Scholar
  28. 28.
    Griffith AA (1921) The phenomena of rupture and flow in solids. Phil Trans R Soc Lond A221:163–197CrossRefADSGoogle Scholar
  29. 29.
    Widom A, Larsen L (2006) Ultra low momentum neutron catalyzed nuclear reactions on metallic hydride surfaces. Eur Phys J C 46:107–112CrossRefADSGoogle Scholar
  30. 30.
    Widom A, Larsen L (2007) Theoretical standard model rates of proton to neutron conversions near metallic hydride surfaces. arXiv:0608059v2 [nucl-th]Google Scholar
  31. 31.
    Cirillo D, Germano R, Tontodonato V, Widom A, Srivastava YN, Del Giudice E, Vitiello G (2012) Water plasma modes and nuclear transmutations on the metallic cathode of a plasma discharge electrolytic cell. Key Eng Mater 495:124–128CrossRefGoogle Scholar
  32. 32.
    Cirillo D, Germano R, Tontodonato V, Widom A, Srivastava YN, Del Giudice E, Vitiello G (2012) Experimental evidence of a neutron flux generation in a plasma discharge electrolytic cell. Key Eng Mater 495:104–107CrossRefGoogle Scholar
  33. 33.
    Ciuchi S, Maiani L, Polosa AD, Riquer V, Ruocco G, Vignati M (2012) Low energy neutron production by inverse-beta decay in metallic hydride surfaces. Eur Phys J C72:2193–2196CrossRefADSGoogle Scholar
  34. 34.
    Widom A, Srivastava YN, Larsen L (2012) Erroneous wave functions of Ciuchi et al for collective modes in neutron production on metallic hydride cathodes. arXiv:1210.5212v1, [nucl-th]
  35. 35.
    Widom A, Swain J, Srivastava YN (2013) Weak interaction neutron production rates in fully ionized plasmas. arXiv:1305.4899v1, [hep-ph]
  36. 36.
    Flüge S (1970) Practical quantum mechanics. Springer, BerlinGoogle Scholar
  37. 37.
    Bahcall JH (1962) Electron capture and nuclear matrix elements of \(Be^7\). Phys Rev 128:1297–1301CrossRefADSGoogle Scholar
  38. 38.
    Bardin G et al (1994) Determination of the electric and magnetic form factors of the proton in the time-like region. Nucl Phys B411:3–32CrossRefADSGoogle Scholar
  39. 39.
    Maiani L, Polosa AD, Riquer V (2014) Neutron production rates by inverse-beta decay in fully ionized plasmas. Eur Phys J C 74:2843–2852CrossRefADSGoogle Scholar
  40. 40.
    Abrikosov AA, Gorkov LP, Dzyaloshinskii IE (1975) Methods of quantum field theory in statistical physics, Sect. 22. Dover Publications, New YorkGoogle Scholar
  41. 41.
    Landau LD, Lifsitz EM (1981) Fisica Statistica, Sect. 85, vol II. Editori Reuniti Edizioni Mir, RomeGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Physics DepartmentNortheastern UniversityBostonUSA
  2. 2.Physics Department & INFNUniversity of PerugiaPerugiaItaly

Personalised recommendations