Skip to main content
Log in

Nonlinear nonplanar vibration of a functionally graded box beam

  • Nonlinear Dynamics and Control of Composites for Smart Engi design
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

A functionally graded material (FGM) is a type of material designed to change continuously within the solid. It can be designed for specific applications such as thermal barrier coatings, corrosion protection, biomedical materials, space/aerospace industries, automotive applications, compliant mechanisms etc. In these applications, many primary and secondary structural elements can be idealized as beams. So, the aim of the present work is to study the nonlinear nonplanar vibration of a clamped-free slender box beam made of a FGM. More specifically, the cross section consisting of two isotropic materials, connected by a FG layer, is considered. To correctly describe the dynamic characteristics of the system, the nonlinear integro-differential equations used in this work, which consider the flexural–flexural–torsional couplings that occur in the nonplanar motions of the beam, include both geometric and inertial nonlinearities. In addition, the Galerkin method is applied to obtain a set of discretized equations of motion, which are in turn solved by numerical integration using the Runge–Kutta method. A detailed parametric analysis using several tools of nonlinear dynamics, unveils the complex dynamics of the FG beam in the main resonance region. The FG beam displays a complex nonlinear dynamic behavior with several coexisting planar and nonplanar solutions, leading to an intricate bifurcation scenario. Special attention is given to the symmetry breaking of beam dynamics and its influence on the bifurcations and instabilities. The results show that even small variations in cross section and material gradation have profound influence on the bifurcation diagrams and the dynamic behavior of the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Pompea W, Worch H, Epple M, Friess W, Gelinsky M, Greil P, Hempele U, Scharnweber D, Schulte K (2003) Functionally graded materials for biomedical applications. Mater Sci Eng A362:40–60. doi:10.1016/S0921-5093(03)00580-X

    Article  Google Scholar 

  2. Wataria F, Yokoyama A, Omori M, Hirai T, Kondo H, Uo M, Kawasaki T (2004) Biocompatibility of materials and development to functionally graded implant for bio-medical application. Compos Sci Technol 64:893–908. doi:10.1016/j.compscitech.2003.09.005

    Article  Google Scholar 

  3. Nogata F, Takahashi H (1995) Intelligent functionally graded material: bamboo. Compos Eng 5(7):743–751. doi:10.1016/0961-9526(95)00037-N

    Article  Google Scholar 

  4. Ghavami K, Rodrigues CS, Paciornik S (2003) Bamboo: functionally graded composite material. Asian J Civ Eng 4(1):1–10

    Google Scholar 

  5. Koizumi M (1997) FGM activities in Japan. Compos Part B 28:1–4. doi:10.1016/S1359-8368(96)00016-9

    Article  Google Scholar 

  6. Suresh S, Mortensen A (1998) Fundamentals of functionally graded materials. IOM Communications Ltd., London

    Google Scholar 

  7. Shen H (2009) Functionally graded materials: nonlinear analysis of plates and shells. CRC Press, Boca Raton

    Book  Google Scholar 

  8. Kitipornchai S, Ke LL, Yang J, Xiang Y (2009) Nonlinear vibration of edge cracked functionally graded Timoshenko beams. J Sound Vib 324:962–982. doi:10.1016/j.jsv.2009.02.023

    Article  ADS  Google Scholar 

  9. Ke LL, Yang J, Kitipornchai S (2010) Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams. Compos Struct 92:676–683. doi:10.1016/j.compstruct.2009.09.024

    Article  Google Scholar 

  10. Ke LL, Yang J, Kitipornchai S (2010) An analytical study on the nonlinear vibration of functionally graded beams. Meccanica 45:743–752. doi:10.1007/s11012-009-9276-1

    Article  MATH  MathSciNet  Google Scholar 

  11. Simsek M (2010) Non-linear vibration analysis of a functionally graded Timoshenko beam under action of a moving harmonic load. Compos Struct 92:2532–2546. doi:10.1016/j.compstruct.2010.02.008

    Article  Google Scholar 

  12. Shooshtari A, Rafiee M (2011) Nonlinear forced vibration analysis of clamped functionally graded beams. Acta Mech 221:23–38. doi:10.1007/s00707-011-0491-1

    Article  MATH  Google Scholar 

  13. Esfahania SE, Kianib Y, Eslamib MR (2013) Non-linear thermal stability analysis of temperature dependent FGM beams supported on non-linear hardening elastic foundations. Int J Mech Sci 69:10–20. doi:10.1016/j.ijmecsci.2013.01.007

    Article  Google Scholar 

  14. Kim C, White SR (1997) Thick-walled composite beam theory including 3-D elastic effects and torsional warping. Int J Solids Struct 34:4237–4259. doi:10.1016/S0020-7683(96)00072-8

    Article  MATH  Google Scholar 

  15. McCarthy TR, Chattopadhyay A (1997) A refined higher-order composite box beam theory. Composites Part B 28B:523–534. doi:10.1016/S1359-8368(96)00053-4

    Article  Google Scholar 

  16. Librescu L, Oh SY, Song O (2005) Thin-walled beams made of functionally graded materials and operating in a high temperature environment: vibration and stability. J Therm Stresses 28:649–712. doi:10.1080/01495730590934038

    Article  Google Scholar 

  17. Ziane N, Meftah SA, Belhadj HA, Tounsi A, Bedia EAA (2012) Free vibration analysis of thin and thick-walled FGM box beams. Int J Mech Sci 66:273–282. doi:10.1016/j.ijmecsci.2012.12.001

    Article  Google Scholar 

  18. Piovan MT, Machado SP (2011) Thermoelastic dynamic stability of thin-walled beams with graded material properties. Thin-Walled Struct 49:437–447. doi:10.1016/j.tws.2010.11.002

    Article  Google Scholar 

  19. Machado SP, Piovan MT (2013) Nonlinear dynamics of rotating box FGM beams using nonlinear normal modes. Thin-Walled Struct 62:158–168. doi:10.1016/j.tws.2012.09.005

    Article  Google Scholar 

  20. Carvalho EC, Gonçalves PB, Del Prado ZJGN, Rega G (2012) Influence of axial loads on the nonplanar vibrations of cantilever beams. AIP Conf Proc 1493:215–222. doi:10.1063/1.4765492

    Article  ADS  Google Scholar 

  21. Carvalho EC, Gonçalves PB, Del Prado ZJGN, Rega G (2013) The influence of symmetry breaking on the nonplanar vibrations of slender beams. Proceedings of the XV International Symposium on Dynamic Problems of Mechanics, 17–22, ABCM, Búzios

  22. Carvalho EC, Gonçalves PB, Del Prado ZJGN (2012) Nonplanar dynamics of fixed-free beams with low torsional stiffness, Proceedings of the International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Conference, ASME, Chicago

  23. Crespo da Silva MRM, Glynn CC (1978) Nonlinear flexural–flexural-torsional dynamics of inextensional beams I equation of motion. J Struct Mech 6:437–438. doi:10.1080/03601217808907348

    Article  Google Scholar 

  24. Crespo da Silva MRM, Glynn CC (1978) Nonlinear flexural–flexural-torsional dynamics of inextensional beams II Forced motion. J Struct Mech 6:449–461. doi:10.1080/03601217808907349

    Article  Google Scholar 

  25. Nayfeh AH, Pai PF (2004) Linear and nonlinear structural mechanics. Wiley, Weinheim

    Book  MATH  Google Scholar 

  26. Zhang W (2005) Chaotic motion and its control for nonlinear nonplanar oscillations of a parametrically excited cantilever beam. Chaos Solit Fractals 26:731–745. doi:10.1016/j.chaos.2005.01.042

    Article  ADS  MATH  Google Scholar 

  27. Zhang W, Wang FX, Yao MH (2005) Global bifurcation and chaotic dynamics in nonlinear nonplanar oscillation of a parametrically excited cantilever beam. Nonlinear Dyn 40:251–279. doi:10.1007/s11071-005-6435-3

    Article  MATH  MathSciNet  Google Scholar 

  28. Lee WK, Lee KS, Pak CH (2008) Stability analysis for nonplanar free vibrations of a cantilever beam by using nonlinear normal modes. Nonlinear Dyn 52:217–225. doi:10.1007/s11071-007-9273-7

    Article  MATH  MathSciNet  Google Scholar 

  29. Aghababaei O, Nahvi H, Ziaei-Rad S (2009) Non-linear non-planar vibrations of geometrically imperfect inextensional beams part I: equations of motion and experimental validation. Int J Nonlinear Mech 44:147–160. doi:10.1016/j.ijnonlinmec.2008.10.006

    Article  MATH  Google Scholar 

  30. Crespo da Silva MRM (1991) Equations for nonlinear analysis of 3D motions of beams. Appl Mec Rev 44:51–59. doi:10.1115/1.3121373

    Article  MathSciNet  Google Scholar 

  31. Zaretzky CL, Crespo da Silva MRM (1994) Experimental investigation of non-linear modal coupling in the response of cantilever beams. J Sound Vib 174(2):145–167. doi:10.1006/jsvi 1994.1268

    Article  ADS  Google Scholar 

  32. Carvalho EC (2013) Vibrações Não Lineares e Não Planares e Instabilidade Dinâmica de Barras Esbeltas. PhD Thesis, Pontifical Catholic University of Rio de Janeiro

  33. Doedel EL, Champneys AR, Fairgrieve TF, Kuznetsov YA, Sandstede B, Wang X (1998) AUTO 97. Concordia University, Montreal

    Google Scholar 

  34. Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2012) Functionally graded material: an overview. Proceedings of the World Congress on Engineering, 4–6 WCE, London

  35. Thompson JMT, Hunt GW (1984) Elastic instability phenomena. Wiley, London

    MATH  Google Scholar 

  36. Rega G, Lenci S (2005) Identifying, evaluating and controlling dynamical integrity measures in nonlinear mechanical oscillators. Nonlinear Anal 63:902–914. doi:10.1016/j.na.2005.01.084

    Google Scholar 

  37. Orlando D, Gonçalves PB, Rega G, Lenci S (2013) Influence of symmetries and imperfections on the non-linear vibration modes of archetypal structural systems. Int J Nonlinear Mech 49:175–195. doi:10.1016/j.ijnonlinmec.2012.10.004

    Article  Google Scholar 

  38. Allahverdizadeh A, Mahjoob MJ, Eshraghi I, Asgharifard A (2012) Effects of electrorheological fluid core and functionally graded layers on the vibration behavior of a rotating composite beam. Meccanica 47:1945–1960. doi:10.1007/s11012-012-9566-x

    Article  MathSciNet  Google Scholar 

  39. Rajasekaran S (2013) Buckling and vibration of axially functionally graded nonuniform beams using differential transformation based dynamic stiffness approach. Meccanica 48:1053–1070. doi:10.1007/s11012-012-9651-1

    Article  MathSciNet  Google Scholar 

  40. Fu Y, Chen Y, Zhang P (2013) Thermal buckling analysis of functionally graded beam with longitudinal crack. Meccanica 48:1227–1237. doi:10.1007/s11012-012-9663-x

    Article  MathSciNet  Google Scholar 

  41. Zhang D (2013) Thermal post-buckling and nonlinear vibration analysis of FGM beams based on physical neutral surface and high order shear deformation theory. Meccanica. doi:10.1007/s11012-013-9793-9

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. Gonçalves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carvalho, E.C., Gonçalves, P.B., Rega, G. et al. Nonlinear nonplanar vibration of a functionally graded box beam. Meccanica 49, 1795–1819 (2014). https://doi.org/10.1007/s11012-013-9863-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-013-9863-z

Keywords

Navigation