, Volume 49, Issue 11, pp 2635–2643 | Cite as

Equilibrium of a second-gradient fluid and an elastic solid with surface stresses

  • Victor A. EremeyevEmail author
  • Holm Altenbach


We discuss the kinematical compatibility conditions describing interaction of a second-gradient fluid with an elastic solid possessing the surface elasticity properties.


Capillary fluid Surface stresses Compatibility conditions Nonlinear elasticity Second gradient media 



The first author acknowledges the supports by the RFBR with the grant No. 12-01-00038 and by The International Research Center for Mathematics & Mechanics of Complex Systems (M&MoCS).


  1. 1.
    Aifantis E (2003) Update on a class of gradient theories. Mech Mater 35(3–6):259–280 CrossRefGoogle Scholar
  2. 2.
    Alibert JJ, Seppecher P, dell’Isola F (2003) Truss modular beams with deformation energy depending on higher displacement gradients. Math Mech Solids 8(1):51–73 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Auffray N, dell’Isola F, Eremeyev VA, Madeo A, Rosi G (2013) Analytical continuum mechanics á la Hamilton–Piola least action principle for second gradient continua and capillary fluids. Math Mech Solids. doi: 10.1177/1081286513497616 Google Scholar
  4. 4.
    Bhushan B (ed) (2005) Nanotribology and nanomechanics: an introduction. Springer, Berlin Google Scholar
  5. 5.
    Bhushan B (ed) (2007) Handbook Springer of nanotechnology. Springer, Berlin Google Scholar
  6. 6.
    Brenner H (2005) Navier–Stokes revisited. Physica A: Stat Mech Its Appl 349(1–2):60–132 CrossRefADSGoogle Scholar
  7. 7.
    Casal P, Gouin H (1989) Invariance properties of inviscid fluids of grade n. In: PDEs and continuum models of phase transitions. Springer, Berlin, pp 85–98 CrossRefGoogle Scholar
  8. 8.
    de Gennes PG, Brochard-Wyart F, Quéré D (2004) Capillarity and wetting phenomena: drops, bubbles, pearls, waves. Springer, New York CrossRefGoogle Scholar
  9. 9.
    de Langre E, Baroud CN, Reverdy P (2010) Energy criteria for elasto-capillary wrapping. J Fluids Struct 26(2):205–217 CrossRefGoogle Scholar
  10. 10.
    de Poisson SD (1831) Nouvelle théorie de l’action capillaire. Bachelier Père et Fils, Paris Google Scholar
  11. 11.
    dell’Isola F, Rotoli G (1995) Validity of Laplace formula and dependence of surface tension on curvature in second gradient fluids. Mech Res Commun 22:485–490 CrossRefzbMATHGoogle Scholar
  12. 12.
    dell’Isola F, Seppecher P (1995) The relationship between edge contact forces, double forces and interstitial working allowed by the principle of virtual power. C R Acad Sci 321(8):303–308. Série 2 zbMATHGoogle Scholar
  13. 13.
    dell’Isola F, Seppecher P (1997) Edge contact forces and quasi-balanced power. Meccanica 32(1):33–52 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    dell’Isola F, Gouin H, Seppecher P (1995) Radius and surface tension of microscopic bubbles by second gradient theory. C R Acad Sci, Sér II B, Méc Phys Chim Astron 320:211–216 zbMATHGoogle Scholar
  15. 15.
    dell’Isola F, Gouin H, Rotoli G (1996) Nucleation of spherical shell-like interfaces by second gradient theory: numerical simulations. Eur J Mech B, Fluids 15(4):545–568 zbMATHGoogle Scholar
  16. 16.
    dell’Isola F, Madeo A, Seppecher P (2009) Boundary conditions at fluid-permeable interfaces in porous media: a variational approach. Int J Solids Struct 46(17):3150–3164 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    dell’Isola F, Madeo A, Placidi L (2012) Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D continua. Z Angew Math Mech 92(1):52–71 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    dell’Isola F, Seppecher P, Madeo A (2012) How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la d’Alembert”. Z Angew Math Phys 63:1119–1141 MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Duan HL, Wang J, Karihaloo BL (2008) Theory of elasticity at the nanoscale. In: Advances in applied mechanics, vol 42. Elsevier, Amsterdam, pp 1–68 Google Scholar
  20. 20.
    Dunn JE, Serrin J (1985) On the thermomechanics of interstitial working. Arch Ration Mech Anal 88(2):95–133 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Eremeyev VA, Ivanova EA, Altenbach H, Morozov NF (2014) On effective stiffness of a three-layered plate with a core filled with a capillary fluid. In: Pietraszkiewicz W, Górski J (eds) Shell structures: theory and applications, vol 3. Taylor & Francis, London, pp 85–88 Google Scholar
  22. 22.
    Eringen AC (2002) Nonlocal continuum field theories. Springer, New York zbMATHGoogle Scholar
  23. 23.
    Finn R (1986) Equilibrium capillary surfaces. Springer, New York CrossRefzbMATHGoogle Scholar
  24. 24.
    Germain P (1973) La méthode des puissances virtuelles en mécanique des milieux continus—première partie, théorie du second gradient. J Méc 12:235–274 MathSciNetzbMATHGoogle Scholar
  25. 25.
    Germain P (1973) The method of virtual power in continuum mechanics. Part 2: microstructure. SIAM J Appl Math 25(3):556–575 MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Grotberg JB, Jensen OE (2004) Biofluid mechanics in flexible tubes. Annu Rev Revews Fluid Mech 36:121–147 MathSciNetCrossRefADSGoogle Scholar
  27. 27.
    Gurtin ME, Murdoch AI (1975) Addenda to our paper A continuum theory of elastic material surfaces. Arch Ration Mech Anal 59(4):389–390 MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Gurtin ME, Murdoch AI (1975) A continuum theory of elastic material surfaces. Arch Ration Mech Anal 57(4):291–323 MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Gurtin ME, Vianello M, Williams WO (1986) On fluids of grade n. Meccanica 21(4):179–183 MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Hazel AL, Heil M (2003) Three-dimensional airway reopening: the steady propagation of a semi-infinite bubble into a buckled elastic tube. J Fluid Mech 478:47–70 MathSciNetCrossRefzbMATHADSGoogle Scholar
  31. 31.
    Hazel AL, Heil M (2005) Surface-tension-induced buckling of liquid-lined elastic tubes: a model for pulmonary airway closure. Proc R Soc A 461(2058):1847–1868 MathSciNetCrossRefzbMATHADSGoogle Scholar
  32. 32.
    Javili A, McBride A, Steinmann P (2012) Thermomechanics of solids with lower-dimensional energetics: on the importance of surface, interface, and curve structures at the nanoscale. A unifying review. Appl Mech Rev 65:1–31 Google Scholar
  33. 33.
    Javili A, dell’Isola F, Steinmann P (2013) Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J Mech Phys Solids 61(12):2381–2401 MathSciNetCrossRefzbMATHADSGoogle Scholar
  34. 34.
    Korteweg DJ (1901) Sur la forme que prennent les équations des mouvements des fluides si l’on tient compte des forces capillaires par des variations de densité. Arch Neerl Sci Exactes Nat Sér II(6):1–24 Google Scholar
  35. 35.
    Laplace PS (1805) Sur l’action capillaire. supplément à la théorie de l’action capillaire. In: Traité de mécanique céleste, vol 4. Gauthier–Villars et fils, Paris, pp 771–777. Supplement 1, Livre X Google Scholar
  36. 36.
    Laplace PS (1806) À la théorie de l’action capillaire. supplément à la théorie de l’action capillaire. In: Traité de mécanique céleste, vol 4. Gauthier–Villars et fils, Paris, pp 909–945. Supplement 2, Livre X Google Scholar
  37. 37.
    Lebedev LP, Cloud MJ, Eremeyev VA (2010) Tensor analysis with applications in mechanics. World Scientific, New Jersey CrossRefzbMATHGoogle Scholar
  38. 38.
    Liu JL, Feng XQ (2012) On elastocapillarity: a review. Acta Mech Sin 28(4):928–940 CrossRefzbMATHADSGoogle Scholar
  39. 39.
    Longley WR, Name RGV (eds) (1928) The collected works of J Willard Gibbs, PHD, LLD vol I thermodynamics. Longmans, New York Google Scholar
  40. 40.
    Lurie AI (1990) Nonlinear theory of elasticity. North-Holland, Amsterdam zbMATHGoogle Scholar
  41. 41.
    Madasu S, Cairncross RA (2003) Effect of substrate flexibility on dynamic wetting: a finite element model. Comput Methods Appl Mech Eng 192(25):2671–2702 CrossRefzbMATHADSGoogle Scholar
  42. 42.
    Madeo A, George D, Lekszycki T, Nierenberger M, Rémond Y (2012) A second gradient continuum model accounting for some effects of micro-structure on reconstructed bone remodelling. C R, Méc 340(8):575–589 CrossRefGoogle Scholar
  43. 43.
    Masiani R, Trovalusci P (1996) Cosserat and Cauchy materials as continuum models of brick masonry. Meccanica 31(4):421–432 CrossRefzbMATHGoogle Scholar
  44. 44.
    Mindlin RD (1965) Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct 1(4):417–438 CrossRefGoogle Scholar
  45. 45.
    Mindlin RD, Eshel NN (1968) On first strain-gradient theories in linear elasticity. Int J Solids Struct 4(1):109–124 CrossRefzbMATHGoogle Scholar
  46. 46.
    Murdoch AI (2005) Some fundamental aspects of surface modelling. J Elast 80(1–3):33–52 MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Neukirch S, Roman B, de Gaudemaris B, Bico J (2007) Piercing a liquid surface with an elastic rod: buckling under capillary forces. J Mech Phys Solids 55(6):1212–1235 MathSciNetCrossRefADSGoogle Scholar
  48. 48.
    Ogden RW (1997) Non-linear elastic deformations. Dover, Mineola Google Scholar
  49. 49.
    Pietraszkiewicz W, Eremeyev V, Konopińska V (2007) Extended non-linear relations of elastic shells undergoing phase transitions. Z Angew Math Mech 87(2):150–159 MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Placidi L, Rosi G, Giorgio I, Madeo A (2013) Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials. Math Mech Solids. doi: 10.1177/1081286512474016 Google Scholar
  51. 51.
    Podio-Guidugli P, Vianello M (2013) On a stress-power-based characterization of second-gradient elastic fluids. Contin Mech Thermodyn 25(2–4):399–421 MathSciNetCrossRefADSGoogle Scholar
  52. 52.
    Povstenko Y (2013) Mathematical modeling of phenomena caused by surface stresses in solids. In: Altenbach H, Morozov NF (eds) Surface effects in solid mechanics. Springer, Berlin, pp 135–153 CrossRefGoogle Scholar
  53. 53.
    Rosi G, Giorgio I, Eremeyev VA (2013) Propagation of linear compression waves through plane interfacial layers and mass adsorption in second gradient fluids. Z Angew Math Mech 93(12):914–927 MathSciNetCrossRefGoogle Scholar
  54. 54.
    Rosi G, Madeo A, Guyader JL (2013) Switch between fast and slow Biot compression waves induced by “second gradient microstructure” at material discontinuity surfaces in porous media. Int J Solids Struct 50(10):1721–1746 CrossRefGoogle Scholar
  55. 55.
    Rowlinson JS, Widom B (2003) Molecular theory of capillarity. Dover, New York Google Scholar
  56. 56.
    Sciarra G, dell’Isola F, Coussy O (2007) Second gradient poromechanics. Int J Solids Struct 44(20):6607–6629 MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Sedov LI (1968) Models of continuous media with internal degrees of freedom. J Appl Math Mech 32(5):803–819 CrossRefzbMATHGoogle Scholar
  58. 58.
    Seppecher P (1988) Thermodynamique des zones capillaires. Ann Phys 13(3):13–22 Google Scholar
  59. 59.
    Seppecher P (1989) Étude des conditions aux limites en théorie du second gradient: cas de la capillarité. C R Acad Sci 309:497–502 MathSciNetzbMATHGoogle Scholar
  60. 60.
    Seppecher P (1996) Les fluides de Cahn-Hilliard. Mémoire d’habilitation à diriger des recherches, Université du Sud Toulon Google Scholar
  61. 61.
    Šilhavý M (1997) The mechanics and thermodynamics of continuous media. Springer, Heidelberg zbMATHGoogle Scholar
  62. 62.
    Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77(3):977–1026 CrossRefADSGoogle Scholar
  63. 63.
    Steigmann DJ, Ogden RW (1999) Elastic surface-substrate interactions. Proc R Soc A 455(1982):437–474 MathSciNetCrossRefzbMATHADSGoogle Scholar
  64. 64.
    Trovalusci P, Masiani R (2003) Non-linear micropolar and classical continua for anisotropic discontinuous materials. Int J Solids Struct 40(5):1281–1297 CrossRefzbMATHGoogle Scholar
  65. 65.
    Trovalusci P, Pau A (2013) Derivation of microstructured continua from lattice systems via principle of virtual works: the case of masonry-like materials as micropolar, second gradient and classical continua. Acta Mech. pp 1–21. doi: 10.1007/s00707-013-0936-9 Google Scholar
  66. 66.
    Truesdell C (1966) The elements of continuum mechanics. Springer, New York zbMATHGoogle Scholar
  67. 67.
    Truesdell C, Noll W (1965) The nonlinear field theories of mechanics. In: Flügge S (ed) Handbuch der Physik, vol III/3. Springer, Berlin, pp 1–602 Google Scholar
  68. 68.
    van der Waals JD (1893) The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. J Stat Phys 20:200–244 (English translation by JS Rowlinson) CrossRefGoogle Scholar
  69. 69.
    Wang J, Duan HL, Huang ZP, Karihaloo BL (2006) A scaling law for properties of nano-structured materials. Proc R Soc A 462(2069):1355–1363 CrossRefzbMATHADSGoogle Scholar
  70. 70.
    Wang J, Huang Z, Duan H, Yu S, Feng X, Wang G, Zhang W, Wang T (2011) Surface stress effect in mechanics of nanostructured materials. Acta Mech Solida Sin 24:52–82 CrossRefGoogle Scholar
  71. 71.
    Young T (1805) An essay on the cohesion of fluids. Philos Trans R Soc Lond 95:65–87 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Otto-von-Guericke-University MagdeburgMagdeburgGermany
  2. 2.South Scientific Centre of RASci & South Federal UniversityRostov on DonRussia

Personalised recommendations