Skip to main content
Log in

Observations of shear adhesive force and friction of Blatta orientalis on different surfaces

  • MICRO- OR NANO-MECHANICS
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The shear adhesive force of four non-climbing cockroaches (Blatta orientalis Linnaeus, 1758) was investigated by the use of a centrifugal machine, evaluating the shear safety factor (adhesion force divided by body weight) on six surfaces (steel, aluminium, copper, two sandpapers and a common paper sheet) having different roughness. The adhesive system of Blatta orientalis was characterized by means of a field emission scanning electron microscope and the surface roughness was determined by an atomic force microscope. The cockroach maximum shear safety factor, or apparent friction coefficient, is determined to be 12.1 on the less rough of the two sandpapers, while its minimum value is equal to 1.9 on the steel surface. A two-sample Student t analysis has been conducted in order to evaluate the significance of the differences among the obtained shear safety factors due to both roughness and chemistry. An interesting correlation between cockroach shear adhesion and surface roughness emerges with a threshold mechanism dictated by the competition between claw tip radius and roughness, indicating that the best adhesion is obtained for roughness larger than the claw tip radius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stork NE (1980) Experimental analysis of adhesion of Chrysolina polita (Chrysomelidae: Coleoptera) on a variety of surfaces. J Exp Biol 88:91–107

    Google Scholar 

  2. Eisner T, Aneshansley DJ (2000) Defense by foot adhesion in a beetle (Hemisphaerota cyanea). Proc Natl Acad Sci USA 97:6568–6573

    Article  ADS  Google Scholar 

  3. Voigt D, Schuppert JM, Dattinger S, Gorb SN (2008) Sexual dimorphism in the attachment ability of the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) to rough substrates. J Insect Physiol 54:765–776

    Article  Google Scholar 

  4. Dai Z, Gorb SN, Schwarz U (2002) Roughness-dependent friction force of the tarsal claw system in the beetle Pachnoda marginata (Coleoptera Scarabeiddae). J Exp Biol 205:2479–2488

    Google Scholar 

  5. Bullock JMR, Drechsler P, Federle W (2008) Comparison of smooth and hairy attachment pads in insects: friction, adhesion and mechanisms for direction-dependence. J Exp Biol 211:3333–3343

    Article  Google Scholar 

  6. Eigenbrode SD, Jetter R (2002) Attachment to plant surface waxes by an insect predator. Integr Comput Biol 42:1091–1099

    Article  Google Scholar 

  7. Wigglesworth VB (1987) How does a fly cling to the under surface of a glass sheet? J Exp Biol 129:373–376

    Google Scholar 

  8. Dixon AFG, Croghan PC, Gowing RP (1990) The mechanism by which aphids adhere to smooth surfaces. J Exp Biol 152:243–253

    Google Scholar 

  9. Lees AD, Hardie J (1988) The organs of adhesion in the aphid Megoura viciae. J Exp Biol 136:209–228

    Google Scholar 

  10. Dixon AFG, Croghan PC, Gowing RP (1990) The mechanism by which aphids adhere to smooth surfaces. J Exp Biol 152:243–253

    Google Scholar 

  11. Gorb SN, Gorb EV, Kastner V (2001) Scale effects on the attachment pads and friction forces in syrphid flies (Diptera Syrphidae). J Exp Biol 204:1421–1431

    Google Scholar 

  12. Walker G, Yue AB, Ratcliffe J (1985) The adhesive organ of the blowfly, Calliphora vomitoria: a functional approach (Diptera Calliphoridae). J Zoolog Lond A 205:297–307

    Article  Google Scholar 

  13. Voigt D (2005) Untersuchungen zur Morphologie, Biologie und Ökologie der räuberischen Weichwanze Dicyphus errans Wolff (Heteroptera, Miridae, Bryocorinae). Dissertation, Technische Universität Dresden

  14. Federle W, Rohrseitz K, Holldobler B (2000) Attachment forces of ants measured with a centrifuge: better ‘wax-runners’ have a poorer attachment to a smooth surface. J Exp Biol 203:505–512

    Google Scholar 

  15. Federle W, Riehle M, Curtis ASG, Full RJ (2002) An integrative study of insect adhesion: mechanics and wet adhesion of pretarsal pads in ants. Integr Comput Biol 42:100–1106

    Article  Google Scholar 

  16. Brainerd EL (1994) Adhesion force of ants on smooth surfaces. Am Zool 34:128

    Google Scholar 

  17. Federle W, Baumgartner W, Hölldobler B (2003) Biomechanics of ant adhesive pads: frictional forces are rate- and temperature-dependent. J Exp Biol 206:67–74

    Google Scholar 

  18. Arnold JW (1974) Adaptive features on the tarsi of cockroaches (Insecta: Dictyoptera). Int J Insect Morphol Embryol 3:317–334

    Article  Google Scholar 

  19. Bell WJ, Roth LM, Nalepa CA (2007) Cockroaches. Ecology, behavior and natural history. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  20. Van Casteren A, Codd JA (2008) Foot morphology and substrate adhesion in the Madagascan hissing cockroach, Gromphadorhina portentosa. J Insect Sci 10:1–11

    Article  Google Scholar 

  21. Clemente CJ, Federle W (2008) Pushing versus pulling: division of labour between tarsal attachment pads in cockroaches. Proc R Soc Lond B, Biol Sci 275:1329–1336

    Article  Google Scholar 

  22. Clemente CJ, Dirks JH, Barbero DR, Steiner U, Federle W (2009) Friction ridges in cockroach climbing pads: anisotropy of shear stress measured on transparent, microstructured substrates. J Comp Physiol A 195:805–814

    Article  Google Scholar 

  23. Frazier SF, Larsen GS, Neff D, Quimby L, Carney M, DiCaprio RA, Zill SN (1999) Elasticity and movements of the cockroach tarsus in walking. J Comp Physiol A 185:157–172

    Article  Google Scholar 

  24. Roth LM, Willis ER (1952) Tarsal structure and climbing ability of cockroaches. J Exp Zool 119:483–517

    Article  Google Scholar 

  25. Niederegger S, Gorb SN (2006) Friction and adhesion in the tarsal and metatarsal scopulae of spiders. J Comp Physiol A 192:1223–1232

    Article  Google Scholar 

  26. Kesel AB, Martin A, Seidl T (2004) Getting a grip on spider attachment: an AFM approach to microstructure adhesion in arthropods. Smart Mater Struct 13:512–518

    Article  ADS  Google Scholar 

  27. Kesel AB, Martin A, Seidl T (2003) Adhesion measurements on the attachment devices of the jumping spider Evarcha arcuata. J Exp Biol 206:2733–2738

    Article  Google Scholar 

  28. Autumn K, Peattie AM (2002) Mechanisms of adhesion in geckos. Integr Comput Biol 42:1081–1090

    Article  Google Scholar 

  29. Pugno NM, Lepore E, Toscano S, Pugno F (2011) Adhesion force-displacement curves of living geckos. J Adhes 87:1059–1072

    Article  Google Scholar 

  30. Autumn K, Dittmore A, Santos D, Spenko M, Cutkosky M (2006) Frictional adhesion: a new angle on gecko attachment. J Exp Biol 209:3569–3579

    Article  Google Scholar 

  31. Pugno NM, Lepore E (2008) Living tokay geckos display adhesion times following the Weibull statistics. J Adhes 89:949–962

    Google Scholar 

  32. Pugno NM, Lepore E (2008) Observation of optimal gecko’s adhesion on nanorough surfaces. Biosystems 94:218–222

    Article  Google Scholar 

  33. Lepore E, Antoniolli F, Buono M, Brianza S, Carpinteri A, Pugno N (2008) Preliminary experiments on adhesion of in vivo geckos. J Nanomater 194524. Special issue on nanomechanics and nanostructructured multifunctional materials: experiments, theories, and simulations. doi:10.1155/2008/194524

  34. Huber G, Gorb SN, Hosoda N, Spolenak R, Arzt E (2007) Influence of surface roughness on gecko adhesion. Acta Biomater 3:607–610

    Article  Google Scholar 

  35. Irschick DJ, Austin CC, Petren K, Fisher R, Losos JB, Ellers O (1996) A comparative analysis of clinging ability among pad-bearing lizards. Biol J Linn Soc 59:21–35

    Article  Google Scholar 

  36. Pugno N (2007) Towards a Spiderman suit: large invisible cables and self-cleaning releasable super-adhesive materials. J Phys Condens Matter 19:395001

    Article  Google Scholar 

  37. Pugno N (2008) Spiderman gloves. Nano Today 3:35–41

    Article  Google Scholar 

  38. Varenberg M, Pugno N, Gorb S (2010) Spatulate structures in biological fibrillar adhesion. Soft Matter 6:3269–3272

    Article  ADS  Google Scholar 

  39. Beutel RG, Gorb SN (2001) Ultrastructure of attachment specializations of hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny. J Zoolog Syst Evol Res 39:177–207

    Article  Google Scholar 

  40. Peattie AM (2009) Functional demands of dynamic biological adhesion: an integrative approach. J Comp Physiol B 179:231–239

    Article  Google Scholar 

  41. Gorb SN, Scherge M (2000) Biological microtribology: anisotropy in frictional forces of orthopteran attachment pads reflects the ultrastructure of a highly deformable material. Proc R Soc Lond B, Biol Sci 267:1239–1244

    Article  Google Scholar 

  42. Zani PA (2000) The comparative evolution of lizard claw and toe morphology and clinging performance. J Evol Biol 13:316–325

    Article  Google Scholar 

  43. Cannatella DC, de Queiroz K (1989) Phylogenetic systematics of the anoles: is a new taxonomy warranted? Syst Zool 38:57–69

    Article  Google Scholar 

  44. Guyer C, Savage JM (1986) Cladistic relationships among anoles (Sauria: Iguanidae). Syst Zool 35:509–531

    Article  Google Scholar 

  45. Ruibal R, Ernst V (1979) The structure of the digital setae of lizards. J Morphol 117:271–294

    Article  Google Scholar 

  46. Beutel RG, Gorb SN (2001) Ultrastructure of attachment specializations of hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny. J Zoolog Syst Evol Res 39:177–207

    Article  Google Scholar 

  47. Heethoff M, Koerner L (2007) Small but powerful: the oribatid mite Archegozetes longisetosus Aoki (Acari, Oribatida) produces disproportionately high forces. J Exp Biol 210:3036–3042

    Article  Google Scholar 

  48. Betz O (2002) Performance and adaptive value of tarsal morphology in rove beetles of the genus Stenus (Coleoptera Staphylinidae). J Exp Biol 205:1097–1113

    Google Scholar 

  49. Drechsler P, Federle W (2006) Biomechanics of smooth adhesive pads in insects: influence of tarsal secretion on attachment performance. J Comp Physiol A 192:1213–1222

    Article  Google Scholar 

  50. Betz O (2010) Adhesive exocrine glands in insects: morphology, ultrastructure, and adhesive secretion. In: Byern J, Grunwald I (eds) Biological adhesive systems. From nature to technical and medical application. Springer, Berlin, pp 111–152

    Chapter  Google Scholar 

  51. Gorb SN, Beutel RG, Gorb EV, Jiao Y, Kastner V, Niederegger S, Popov VL, Scherge M, Schwarz U, Votsch W (2002) Structural design and biomechanics of friction-based releasable attachment devices in insects. Integr Comput Biol 42:1127–1139

    Article  Google Scholar 

  52. Bitar LA, Voigt D, Zebitz CPW, Gorb SN (2010) Attachment ability of the codling moth Cydia pomonella L. to rough substrates. J Insect Physiol 56:1966–1972

    Article  Google Scholar 

  53. Persson BNJ (2007) Biological adhesion for locomotion on rough surfaces: basic principles and a theorist’s view. Mater Res Soc Bull 32:486–490

    Article  Google Scholar 

  54. Bullock JMR, Federle W (2009) Division of labour and sex differences between fibrillar, tarsal adhesive pads in beetles: effective elastic modulus and attachment performance. J Exp Biol 212:1876–1888

    Article  Google Scholar 

  55. Tolke S (2005) Bau und Funktion der Haftstrukturen an den Tarsen ausgewahlter Heyeropterenarten. Diploma thesis, Tubingen, Germany

  56. Bullock JMR, Federle W (2010) The effect of surface roughness on claw and adhesive hair performance in the dock beetle Gastrophysa viridula. Insect Sci 00:1–7. doi:10.1111/j.1744-7917.2010.01369.x

    Google Scholar 

Download references

Acknowledgements

NMP is supported by the European Research Council (ERC Starting Grant BIHSNAM on “Bioinspired hierarchical super-nanomaterials” and ERC Proof of Concept REPLICA) and by the Graphene Flagship. The authors would like to thank F. Casini for his advice and for providing the insects, M. Binda at the LabSamp of Politecnico di Milano for her helpfulness in the surface analysis and E. Enrico at NanoFacility Piemonte, INRiM, a laboratory supported by Compagnia di San Paolo, for his help in performing the FESEM micrographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Pugno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lepore, E., Brambilla, P., Pero, A. et al. Observations of shear adhesive force and friction of Blatta orientalis on different surfaces. Meccanica 48, 1863–1873 (2013). https://doi.org/10.1007/s11012-013-9796-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-013-9796-6

Keywords

Navigation