Skip to main content
Log in

3D elasticity solution for static analysis of functionally graded piezoelectric annular plates on elastic foundations using SSDQM

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Three-dimensional elasticity solution for static analysis of functionally graded piezoelectric (FGP) annular plates with and without elastic foundations through using state-space based differential quadrature method (SSDQM) at different boundary conditions is presented in this paper. The material properties are assumed to have an exponent-law variation along the thickness. A semi-analytical approach which makes use of state-space method in thickness direction and one-dimensional differential quadrature method in radial direction is utilized to obtain the mechanical behavior of FGP annular plates. The state variables include a combination of electric potential, electric displacement, three mechanical displacement parameters and three stress parameters. Numerical results are given to demonstrate the convergency and accuracy of the present method. Both closed circuit and open circuit effects are studied and the influences of the Winkler and shearing layer elastic coefficients of the foundations, the material property graded index, radius, thickness, mechanical load and boundary conditions on the deflection response of the FGP annular plates are investigated. The new results can be used as a benchmark solutions for future researches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gandhi MV, Thompson BS (1992) Smart materials and structures. Chapman & Hall, London

    Google Scholar 

  2. Rao SS, Sunar M (1994) Piezoelectricity and its use in disturbance sensing and control of flexible structures: a survey. Appl Mech Rev 47:113–123

    Article  ADS  Google Scholar 

  3. Branco PJC, Dente JA (2004) On the electromechanics of a piezoelectric transducer using a bimorph cantilever undergoing asymmetric sensing and actuation. Smart Mater Struct 13(4):631–642

    Article  ADS  Google Scholar 

  4. Kruusing A (2000) Analysis and optimization of loaded cantilever beam microactuators. Smart Mater Struct 9(2):186–196

    Article  ADS  Google Scholar 

  5. Zhu XH, Meng ZY (1995) Operational principle fabrication and displacement characteristic of a functionally gradient piezoelectric ceramic actuator. Sens Actuators 48:169–176

    Article  Google Scholar 

  6. Wu CCM, Kahn M, Moy W (1996) Piezoelectric ceramics with functional gradients: a new application in material design. J Am Ceram Soc 79:809–812

    Article  Google Scholar 

  7. Zhong Z, Shang ET (2003) Three-dimensional exact analysis of a simply supported functionally gradient piezoelectric plate. Int J Solids Struct 40:5335–5352

    Article  MATH  Google Scholar 

  8. Lu P, Lee HP, Lu C (2006) Exact solutions for simply supported functionally graded piezoelectric laminates by Stroh-like formalism. Compos Struct 72:352–363

    Article  Google Scholar 

  9. Lee JS, Jiang LZ (1996) Exact electroelastic analysis of piezoelectric laminae via state-space approach. Int J Solids Struct 33(7):977–990

    Article  MATH  Google Scholar 

  10. Bert CW, Malik M (1997) Differential quadrature: a powerful new technique for analysis of composite structures. Compos Struct 39(3–4):179–189

    Article  Google Scholar 

  11. Chen WQ, Ding HJ (2000) Bending of functionally graded piezoelectric rectangular plates. Acta Mech Solida Sin 13(4):312–319

    MathSciNet  Google Scholar 

  12. Chen WQ, Ding HJ (2002) On free vibration of a functionally graded piezoelectric rectangular plate. Acta Mech 153:207–216

    Article  MATH  Google Scholar 

  13. Lim CW, He LH (2001) Exact solution of a compositionally graded piezoelectric layer under uniform stretch bending and twisting. Int J Mech Sci 43:2479–2492

    Article  MATH  Google Scholar 

  14. Reddy JN, Cheng ZQ (2001) Three-dimensional solutions of smart functionally graded plates. J Appl Mech 68:234–241

    Article  MATH  Google Scholar 

  15. Lu P, Lee HP, Lu C (2005) An exact solution for simply supported functionally graded piezoelectric laminates in cylindrical bending. Int J Mech Sci 47:437–458

    Article  MATH  Google Scholar 

  16. Li XY, Ding HJ, Che WQ (2008) Three-dimensional analytical solution for a transversely isotropic functionally graded piezoelectric circular plate subject to a uniform electric potential difference. Sci China, Ser G, Phys Mech Astron 51(8):1116–1125

    Article  ADS  MATH  Google Scholar 

  17. Xiang HJ, Shi ZF (2009) Static analysis for functionally graded piezoelectric actuators or sensors under a combined electro-thermal load. Eur J Mech A, Solids 28:338–346

    Article  MATH  Google Scholar 

  18. Li Y, Shi ZF (2009) Free vibration of a functionally graded piezoelectric beam via state-space based differential quadrature. Compos Struct 87:257–264

    Article  Google Scholar 

  19. Alibeigloo A, Simintan V (2011) Elasticity solution of functionally graded circular and annular plates integrated with sensor and actuator layers using differential quadrature. Appl Math Model 93:2473–2486

    Google Scholar 

  20. Jodaei A, Jalal M, Yas MH (2011) Free vibration analysis of functionally graded annular plates by state-space based differential quadrature method and comparative modeling by ANN. Composites, Part B, Eng. doi:10.1016/j.compositesb.2011.08.052

    Google Scholar 

  21. Yas MH, Jodaei A, Irandoust S, NasiriAghdam M (2011) Three-dimensional free vibration analysis of functionally graded piezoelectric annular plates on elastic foundations. Meccanica. doi:10.1007/s11012-011-9525-y

    Google Scholar 

  22. Huang ZY, Lu CF, Chen WQ (2008) Benchmark solutions for functionally graded thick plates resting on Winkler–Pasternak elastic foundations. Compos Struct 85:95–104

    Article  Google Scholar 

  23. Ying J, Lu CF, Chen WQ (2008) Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations. Compos Struct 84:209–219

    Article  Google Scholar 

  24. Zenkour AM (2009) The refined sinusoidal theory for FGM plates on elastic foundations. Int J Mech Sci 51:869–880

    Article  Google Scholar 

  25. Zenkour AM (2010) Hygro-thermo-mechanical effects on FGM plates resting on elastic foundations. Compos Struct 93:234–238

    Article  Google Scholar 

  26. Sepahi O, Forouzan MR, Malekzadeh P (2010) Large deflection analysis of thermo-mechanical loaded annular FGM plates on nonlinear elastic foundation via DQM. Compos Struct 92:2369–2378

    Article  Google Scholar 

  27. Hui SS, Zhen XW (2010) Nonlinear bending of FGM plates subjected to combined loading and resting on elastic foundations. Compos Struct 92:2517–2524

    Article  Google Scholar 

  28. Chen WQ, Lv CF, Bian ZG (2003) Elasticity solution for free vibration of laminated beams. Compos Struct 62(1):75–82

    Article  Google Scholar 

  29. Shu C, Richards BE (1992) Application of generalized differential quadrature to solve two-dimensional incompressible Navier-Stoaks equations. Int J Numer Methods Fluids 15:791–798

    Article  MATH  Google Scholar 

  30. Nie G, Zhong Z (2007) Axisymmetric bending of two-directional functionally graded circular and annular plates. Acta Mech Solida Sin 20:289–295

    Article  Google Scholar 

  31. Li XY, Ding HJ, Chen WQ (2008) Axisymmetric elasticity solutions for a uniformly loaded annular plate of transversely isotropic functionally graded materials. Acta Mech 196:139–159

    Article  MATH  Google Scholar 

  32. Young WC, Budynas RG (2002) Roark’s formulas for stress and strain. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Jodaei.

Appendices

Appendix A

Assumption 1

$$\begin{aligned} &\frac{1}{\overline{r}_{i}}I_{N} = \left [ \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} \frac{1}{\overline{r}_{1}} & & & 0 \\ & \frac{1}{\overline{r}_{2}} & & \\ & & \ddots & \\ 0 & & & \frac{1}{\overline{r}_{N}} \end{array} \right ],\\ & \frac{1}{\overline{r}_{i}}I_{N - 1} = \left [ \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} \frac{1}{\overline{r}_{1}} & & & 0 \\ & \frac{1}{\overline{r}_{2}} & & \\ & & \ddots & \\ 0 & & & \frac{1}{\overline{r}_{N - 1}} \end{array} \right ],\\ &\frac{1}{\overline{r}_{i}}I_{N - 2} = \left [ \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} \frac{1}{\overline{r}_{2}} & & & 0 \\ & \frac{1}{\overline{r}_{3}} & & \\ & & \ddots & \\ 0 & & & \frac{1}{\overline{r}_{N - 1}} \end{array} \right ] \end{aligned}$$

Assumption 2

If f=f ij (i=n,…,n′,j=m,…,m′):

$$\begin{aligned} &(1) \ \frac{1}{\overline{r}_{i}}f = \left [ \begin{array}{@{}cccc@{}} \frac{1}{\overline{r}_{n}}f_{n,m} & \frac{1}{\overline{r}_{n}}f_{n,m + 1} & \cdots & \\ \frac{1}{\overline{r}_{n + 1}}f_{n + 1,m} & \frac{1}{\overline{r}_{n + 1}}f_{n + 1,m + 1} & \cdots & \\ \vdots & \vdots & \ddots & \\ & & & \frac{1}{\overline{r}_{n'}}f_{n',m'}\end{array} \right ]\\ &(2) \ \frac{1}{\overline{r}_{j}}f\\ &\quad = \left [ \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} \frac{1}{\overline{r}_{m}}f_{n,m} & \frac{1}{\overline{r}_{m + 1}}f_{n,m + 1} & \cdots & \\ \frac{1}{\overline{r}_{m}}f_{n + 1,m} & \frac{1}{\overline{r}_{m + 1}}f_{n + 1,m + 1} & \cdots & \\ \vdots & \vdots & \ddots & \\ & & & \frac{1}{\overline{r}_{m'}}f_{n',m'} \end{array} \right ] \end{aligned}$$

(cc):

$$M_{b} = \left [ \begin{array}{@{}cccccccc@{}} - \lambda I_{N - 2} & 0 & 0 & - \frac{h^{2}\overline{C}_{55}}{a^{2}}f_{cc} & - \frac{h}{a} ( g_{cc}^{ ( 1 )} + \frac{1}{\overline{r}_{i}}I_{N - 2} ) & - \frac{mh}{a}\frac{1}{\overline{r}_{i}}I_{N - 2} & 0 & - \frac{h^{2}\overline{e}_{5}}{a^{2}}f_{cc} \\ 0 & 0 & 0 & - \frac{h}{a}g_{cc}^{ ( 1 )} & \frac{1}{\overline{C}_{55}}I_{N - 2} & 0 & 0 & - \frac{h\overline{e}_{5}}{a\overline{C}_{55}}g_{cc}^{ ( 1 )} \\ 0 & 0 & 0 & \frac{mh}{a}\frac{1}{\overline{r}_{i}}I_{N - 2} & 0 & \frac{1}{\overline{C}_{44}}I_{N - 2} & 0 & \frac{mh\overline{e}_{4}}{a\overline{C}_{44}}\frac{1}{\overline{r}_{i}}I_{N - 2} \\ s_{1}I_{N - 2} & s_{2}g_{cc}^{ ( 1 )} + s_{3}\frac{1}{\overline{r}_{i}}I_{N - 2} & s_{4}\frac{1}{\overline{r}_{i}}I_{N - 2} & 0 & 0 & 0 & s_{5}I_{N - 2} & 0 \\ s_{6}g_{cc}^{ ( 1 )} + s_{7}\frac{1}{\overline{r}_{i}}I_{N - 2} & M_{52} & M_{53} & 0 & - \lambda I_{N - 2} & 0 & s_{19}g_{cc}^{ ( 1 )} + s_{20}\frac{1}{\overline{r}_{i}}I_{N - 2} & 0 \\ s_{21}\frac{1}{\overline{r}_{i}}I_{N - 2} & M_{62} & M_{63} & 0 & 0 & - \lambda I_{N - 2} & s_{30}\frac{1}{\overline{r}_{i}}I_{N - 2} & 0 \\ 0 & 0 & 0 & - \frac{h^{2}\overline{e}_{5}}{a^{2}}f_{cc} & s_{31} ( g_{cc}^{ ( 1 )} + \frac{1}{\overline{r}_{i}}I_{N - 2} ) & s_{32}\frac{1}{\overline{r}_{i}}I_{N - 2} & - \lambda I_{N - 2} & M_{78} \\ s_{35}I_{N - 2} & s_{36}g_{cc}^{ ( 1 )} + s_{37}\frac{1}{\overline{r}_{i}}I_{N - 2} & s_{38}\frac{1}{\overline{r}_{i}}I_{N - 2} & 0 & 0 & 0 & s_{39}I_{N - 2} & 0 \end{array} \right ] $$
$$\begin{aligned} &\begin{aligned}M_{52} &= s_{8}g_{cc}^{ ( 2 )} + s_{9}f_{cc} + s_{11}\frac{1}{\overline{r}_{j}}g_{cc}^{ ( 1 )} + s_{12}\frac{1}{\overline{r}_{i}}g_{cc}^{ ( 1 )}\\ &\quad + s_{14}\frac{1}{\overline{r}_{i}^{2}}I_{N - 2},\end{aligned}\\ &M_{53} = s_{16}\frac{1}{\overline{r}_{j}}g_{cc}^{ ( 1 )} + s_{17}\frac{1}{\overline{r}_{i}}g_{cc}^{ ( 1 )} + s_{18}\frac{1}{\overline{r}_{i}^{2}}I_{N - 2} \\ &M_{62} = s_{22}\frac{1}{\overline{r}_{j}}g_{cc}^{ ( 1 )} + s_{23}\frac{1}{\overline{r}_{i}}g_{cc}^{ ( 1 )} + s_{24}\frac{1}{\overline{r}_{i}^{2}}I_{N - 2},\\ &M_{63} = s_{25}g_{cc}^{ ( 2 )} + s_{26} \frac{1}{\overline{r}_{j}}g_{cc}^{ ( 1 )} + s_{27} \frac{1}{\overline{r}_{i}}g_{cc}^{ ( 1 )} + s_{28} \frac{1}{\overline{r}_{i}^{2}}I_{N - 2} \\ &\begin{aligned}M_{78} &= s_{32} \biggl( g_{cc}^{ ( 2 )} + \frac{1}{\overline{r}_{i}}g_{cc}^{ ( 1 )} \biggr) + s_{33}f_{cc}\\ &\quad + s_{34}\frac{1}{\overline{r}_{i}^{2}}I_{N - 2}\end{aligned} \\ &g_{cc}^{ ( 1 )} = g_{ij}^{ ( 1 )}\ ( i,j = 2, \ldots,N - 1 ),\\ &g_{cc}^{ ( 2 )} = g_{ij}^{ ( 2 )}\ ( i,j = 2,\ldots,N - 1 ),\\ & f_{cc} = g_{i1}^{ ( 1 )}g_{1j}^{ ( 1 )} + g_{iN}^{ ( 1 )}g_{Nj}^{ ( 1 )}\ ( i,j = 2, \ldots,N - 1 ) \end{aligned}$$

(sc):

$$M_{b} = \left [ \begin{array}{@{}cccccccc@{}} - \lambda I_{N - 2} & 0 & 0 & - \frac{h^{2}\overline{C}_{55}}{a^{2}}f_{3sc} & - \frac{h}{a} ( g_{4sc}^{ ( 1 )} + \frac{1}{\overline{r}_{i}}I_{sc} ) & - \frac{mh}{a}\frac{1}{\overline{r}_{i}}I_{N - 2} & 0 & - \frac{h^{2}\overline{e}_{5}}{a^{2}}f_{3sc} \\ 0 & 0 & 0 & - \frac{h}{a}g_{3sc}^{ ( 1 )} & \frac{1}{\overline{C}_{55}}I_{N - 1} & 0 & 0 & - \frac{h\overline{e}_{5}}{a\overline{C}_{55}}g_{3sc}^{ ( 1 )} \\ 0 & 0 & 0 & \frac{mh}{a}\frac{1}{\overline{r}_{i}}I_{N - 2} & 0 & \frac{1}{\overline{C}_{44}}I_{N - 2} & 0 & \frac{mh\overline{e}_{4}}{a\overline{C}_{44}}\frac{1}{\overline{r}_{i}}I_{N - 2} \\ s_{1}I_{N - 2} & s_{2}g_{4sc}^{ ( 1 )} + s_{3}\frac{1}{\overline{r}_{i}}I_{sc} & s_{4}\frac{1}{\overline{r}_{i}}I_{N - 2} & 0 & 0 & 0 & s_{5}I_{N - 2} & 0 \\ s_{6}g_{3sc}^{ ( 1 )} + s_{7}\frac{1}{\overline{r}_{i}}I_{sc}^{T} & M_{52} & M_{53} & 0 & - \lambda I_{N - 1} & 0 & s_{19}g_{3sc}^{ ( 1 )} + s_{20}\frac{1}{\overline{r}_{i}}I_{sc}^{T} & 0 \\ s_{21}\frac{1}{\overline{r}_{i}}I_{N - 2} & M_{62} & M_{63} & 0 & 0 & - \lambda I_{N - 2} & s_{30}\frac{1}{\overline{r}_{i}}I_{N - 2} & 0 \\ 0 & 0 & 0 & - \frac{h^{2}\overline{e}_{5}}{a^{2}}f_{3sc} & s_{31} ( g_{4sc}^{ ( 1 )} + \frac{1}{\overline{r}_{i}}I_{sc} ) & s_{32}\frac{1}{\overline{r}_{i}}I_{N - 2} & - \lambda I_{N - 2} & M_{78} \\ s_{35}I_{N - 2} & s_{36}g_{4sc}^{ ( 1 )} + s_{37}\frac{1}{\overline{r}_{i}}I_{sc} & s_{38}\frac{1}{\overline{r}_{i}}I_{N - 2} & 0 & 0 & 0 & s_{39}I_{N - 2} & 0 \end{array} \right ] $$
$$\begin{aligned} &\begin{aligned} M_{52} &= s_{8}g_{1sc}^{ ( 2 )} + s_{9}f_{1sc} + s_{10}f_{2sc} \\ &\quad + s_{11} \biggl[ [ 0 ]_{N - 1 \times 1} \biggl[ \frac{1}{\overline{r}_{j}}g_{3sc}^{ ( 1 )} \biggr] \biggr] + \left [ \begin{array}{l} {[ s_{13}\frac{1}{\overline{r}_{1}}g_{1j}^{ ( 1 )} ]} \\ {[ s_{12}\frac{1}{\overline{r}_{i}}g_{4sc}^{ ( 1 )} ]} \end{array} \right ] \\ &\quad + \left [ \begin{array}{l} {[ s_{15}\frac{1}{\overline{r}_{1}^{2}} ]} [ 0 ]_{1 \times N - 2} \\ {[ s_{14}\frac{1}{\overline{r}_{i}^{2}}I_{sc} ]} \end{array} \right ] \end{aligned}\\ &M_{53} = s_{16}\frac{1}{\overline{r}_{j}}g_{3sc}^{ ( 1 )} + s_{17}\frac{1}{\overline{r}_{i}}g_{3sc}^{ ( 1 )} + s_{18}\frac{1}{\overline{r}_{i}^{2}}I_{sc}^{T},\\ &M_{62} = s_{22}\frac{1}{\overline{r}_{j}}g_{4sc}^{ ( 1 )} + s_{23}\frac{1}{\overline{r}_{i}}g_{4sc}^{ ( 1 )} + s_{24}\frac{1}{\overline{r}_{i}^{2}}I_{sc} \\ &M_{63} = s_{25}g_{2sc}^{ ( 2 )} \,{+}\, s_{26}\frac{1}{\overline{r}_{j}}g_{2sc}^{ ( 1 )} + s_{27}\frac{1}{\overline{r}_{i}}g_{2sc}^{ ( 1 )} + s_{28}\frac{1}{\overline{r}_{i}^{2}}I_{N - 2},\\ & M_{78} = s_{32} \biggl( g_{2sc}^{ ( 2 )} + \frac{1}{\overline{r}_{i}}g_{2sc}^{ ( 1 )} \biggr) + s_{33}f_{3sc} + s_{34}\frac{1}{\overline{r}_{i}^{2}}I_{N - 2} \\ &g_{2sc}^{ ( 1 )} = g_{ij}^{ ( 1 )} \ ( i,j = 2, \ldots,N - 1 ),\\ &g_{3sc}^{ ( 1 )} = g_{ij}^{ ( 1 )} \ ( i = 1,\ldots,N - 1,j = 2,\ldots,N - 1 ) \\ &g_{4sc}^{ ( 1 )} = g_{ij}^{ ( 1 )} \ ( i = 2, \ldots,N - 1,j = 1,\ldots,N - 1 ),\\ &g_{1sc}^{ ( 2 )} = g_{ij}^{ ( 2 )}\ ( i,j = 1,\ldots,N - 1 ) \\ &g_{2sc}^{ ( 2 )} = g_{ij}^{ ( 2 )} \ ( i,j = 2, \ldots,N - 1 ),\\ &f_{1sc} = g_{i1}^{ ( 1 )}g_{1j}^{ ( 1 )} + g_{iN}^{ ( 1 )}g_{Nj}^{ ( 1 )} \ ( i,j = 1, \ldots,N - 1 ) \\ &f_{2sc} = g_{i1}^{ ( 1 )}g_{1j}^{ ( 1 )} \ ( i,j = 1,\ldots,N - 1 ),\\ &f_{3sc} = g_{iN}^{ ( 1 )}g_{Nj}^{ ( 1 )} \ ( i,j = 2,\ldots,N - 1 ),\\ &I_{sc} = \bigl[ [ 0 ]_{N - 2 \times 1}I_{N - 2} \bigr] \end{aligned}$$

(ss):

$$M_{b} = \left [ \begin{array}{c@{ \ }c@{ \ }c@{ \ }c@{ \ }c@{ \ }c@{ \ }c@{ \ }c} - \lambda I_{N - 2} & 0 & 0 & 0 & - \frac{h}{a} ( g_{4ss}^{ ( 1 )} + \frac{1}{\overline{r}_{i}}I_{ss} ) & - \frac{mh}{a}\frac{1}{\overline{r}_{i}}I_{N - 2} & 0 & 0 \\ 0 & 0 & 0 & - \frac{h}{a}g_{3ss}^{ ( 1 )} & \frac{1}{\overline{C}_{55}}I_{N} & 0 & 0 & - \frac{h\overline{e}_{5}}{a\overline{C}_{55}}g_{3ss}^{ ( 1 )} \\ 0 & 0 & 0 & \frac{mh}{a}\frac{1}{\overline{r}_{i}}I_{N - 2} & 0 & \frac{1}{\overline{C}_{44}}I_{N - 2} & 0 & \frac{mh\overline{e}_{4}}{a\overline{C}_{44}}\frac{1}{\overline{r}_{i}}I_{N - 2} \\ s_{1}I_{N - 2} & s_{2}g_{4ss}^{ ( 1 )} + s_{3}\frac{1}{\overline{r}_{i}}I_{ss} & s_{4}\frac{1}{\overline{r}_{i}}I_{N - 2} & 0 & 0 & 0 & s_{5}I_{N - 2} & 0 \\ s_{6}g_{3ss}^{ ( 1 )} + s_{7}\frac{1}{\overline{r}_{i}}I_{ss}^{T} & M_{52} & M_{53} & 0 & - \lambda I_{N} & 0 & s_{19}g_{3ss}^{ ( 1 )} + s_{20}\frac{1}{\overline{r}_{i}}I_{ss}^{T} & 0 \\ s_{21}\frac{1}{\overline{r}_{i}}I_{N - 2} & M_{62} & M_{63} & 0 & 0 & - \lambda I_{N - 2} & s_{30}\frac{1}{\overline{r}_{i}}I_{N - 2} & 0 \\ 0 & 0 & 0 & 0 & s_{31} ( g_{4ss}^{ ( 1 )} + \frac{1}{\overline{r}_{i}}I_{ss} ) & s_{32}\frac{1}{\overline{r}_{i}}I_{N - 2} & - \lambda I_{N - 2} & M_{78} \\ s_{35}I_{N - 2} & s_{36}g_{4ss}^{ ( 1 )} + s_{37}\frac{1}{\overline{r}_{i}}I_{ss} & s_{38}\frac{1}{\overline{r}_{i}}I_{N - 2} & 0 & 0 & 0 & s_{39}I_{N - 2} & 0 \end{array} \right ] $$

where

$$\begin{aligned} &\begin{aligned}M_{52} &= s_{8} \bigl( g_{1ss}^{ ( 2 )} - f_{ss} \bigr)\\ &\quad + s_{11} \biggl[ [ 0 ]_{N \times 1} \biggl[ \frac{1}{\overline{r}_{j}}g_{3ss}^{ ( 1 )} \biggr] [ 0 ]_{N \times 1} \biggr]\\ &\quad + \left [ \begin{array}{l} {[ s_{13}\frac{1}{\overline{r}_{1}}g_{1j}^{ ( 1 )} ]} \\ {[ s_{12}\frac{1}{\overline{r}_{i}}g_{4ss}^{ ( 1 )} ]} \\ {[ s_{13}\frac{1}{\overline{r}_{N}}g_{Nj}^{ ( 1 )} ]} \end{array} \right ] + \left [ \begin{array}{l} {[ s_{15}\frac{1}{\overline{r}_{1}^{2}} ]} [ 0 ]_{1 \times N - 1} \\ {[ s_{14}\frac{1}{\overline{r}_{i}^{2}}I_{ss} ]} \\ {[ 0 ]_{1 \times N - 1}} {[ s_{15}\frac{1}{\overline{r}_{N}^{2}} ]} \end{array} \right ]\end{aligned}\\ &M_{53} = s_{16}\frac{1}{\overline{r}_{j}}g_{3ss}^{ ( 1 )} + s_{17}\frac{1}{\overline{r}_{i}}g_{3ss}^{ ( 1 )} + s_{18}\frac{1}{\overline{r}_{i}^{2}}I_{ss}^{T},\\ &M_{62} = s_{22}\frac{1}{\overline{r}_{j}}g_{4ss}^{ ( 1 )} + s_{23}\frac{1}{\overline{r}_{i}}g_{4ss}^{ ( 1 )} + s_{24}\frac{1}{\overline{r}_{i}^{2}}I_{ss} \\ &M_{63} = s_{25}g_{2ss}^{ ( 2 )} + s_{26}\frac{1}{\overline{r}_{j}}g_{2ss}^{ ( 1 )} + s_{27}\frac{1}{\overline{r}_{i}}g_{2ss}^{ ( 1 )} + s_{28}\frac{1}{\overline{r}_{i}^{2}}I_{N - 2},\\ & M_{78} = s_{32} \biggl( g_{2ss}^{ ( 2 )} + \frac{1}{\overline{r}_{i}}g_{2ss}^{ ( 1 )} \biggr) + s_{34} \frac{1}{\overline{r}_{i}^{2}}I_{N - 2} \\ &g_{2ss}^{ ( 1 )} = g_{ij}^{ ( 1 )} \ ( i,j = 2, \ldots,N - 1 ),\\ & g_{3ss}^{ ( 1 )} = g_{ij}^{ ( 1 )} \ ( i = 1,\ldots,N,j = 2,\ldots,N - 1 ) \\ &g_{4ss}^{ ( 1 )} = g_{ij}^{ ( 1 )} \ ( i = 2, \ldots,N - 1,j = 1,\ldots,N ),\\ &g_{1ss}^{ ( 2 )} = g_{ij}^{ ( 2 )} \ ( i,j = 1,\ldots,N ) \\ &g_{2ss}^{ ( 2 )} = g_{ij}^{ ( 2 )} \ ( i,j = 2, \ldots,N - 1 ),\\ &f_{ss} = g_{i1}^{ ( 1 )}g_{1j}^{ ( 1 )} + g_{iN}^{ ( 1 )}g_{Nj}^{ ( 1 )} \ ( i,j = 1, \ldots,N ),\\ &I_{ss} = \bigl[ [ 0 ]_{N - 2 \times 1}I_{N - 2} [ 0 ]_{N - 2 \times 1} \bigr] \end{aligned}$$

where

$$\begin{aligned} &M_{52} = s_{8}g_{ij}^{ ( 2 )} + s_{11}\frac{1}{\overline{r}_{j}}g_{ij}^{ ( 1 )} + s_{12}\frac{1}{\overline{r}_{i}}g_{ij}^{ ( 1 )} + s_{14}\frac{1}{\overline{r}_{i}^{2}}I_{N},\\ & M_{53} = s_{16}\frac{1}{\overline{r}_{j}}g_{ij}^{ ( 1 )} + s_{17}\frac{1}{\overline{r}_{i}}g_{ij}^{ ( 1 )} + s_{18}\frac{1}{\overline{r}_{i}^{2}}I_{N} \\ &M_{62} = s_{22}\frac{1}{\overline{r}_{j}}g_{ij}^{ ( 1 )} + s_{23}\frac{1}{\overline{r}_{i}}g_{ij}^{ ( 1 )} + s_{24}\frac{1}{\overline{r}_{i}^{2}}I_{N},\\ &M_{63} = s_{25}g_{ij}^{ ( 2 )} + s_{26} \frac{1}{\overline{r}_{j}}g_{ij}^{ ( 1 )} + s_{27} \frac{1}{\overline{r}_{i}}g_{ij}^{ ( 1 )} + s_{28} \frac{1}{\overline{r}_{i}^{2}}I_{N} \\ &M_{78} = s_{32} \biggl( g_{ij}^{ ( 2 )} + \frac{1}{\overline{r}_{i}}g_{ij}^{ ( 1 )} \biggr) + s_{34} \frac{1}{\overline{r}_{i}^{2}}I_{N}, \\ &s_{1} = \frac{\overline{k}_{3}}{\overline{k}_{3}\overline{C}_{33} + \overline{e}_{3}^{2}},\quad s_{2} = - \frac{h}{a} \biggl( \frac{\overline{k}_{3}\overline{C}_{13} + \overline{e}_{1}\overline{e}_{3}}{\overline{k}_{3}\overline{C}_{33} + \overline{e}_{3}^{2}} \biggr),\\ & s_{3} = - \frac{h}{a} \biggl( \frac{\overline{k}_{3}\overline{C}_{23} + \overline{e}_{2}\overline{e}_{3}}{\overline{k}_{3}\overline{C}_{33} + \overline{e}_{3}^{2}} \biggr),\\ & s_{4} = - \frac{mh}{a} \biggl( \frac{\overline{k}_{3}\overline{C}_{23} + \overline{e}_{2}\overline{e}_{3}}{\overline{k}_{3}\overline{C}_{33} + \overline{e}_{3}^{2}} \biggr)\\ &s_{5} = \frac{\overline{e}_{3}}{\overline{k}_{3}\overline{C}_{33} + \overline{e}_{3}^{2}},\quad s_{6} = - \frac{h}{a} \biggl( \frac{\overline{k}_{3}\overline{C}_{13} + \overline{e}_{1}\overline{e}_{3}}{\overline{k}_{3}\overline{C}_{33} + \overline{e}_{3}^{2}} \biggr),\\ & s_{7} = - \frac{h}{a} \biggl( \frac{\overline{k}_{3} ( \overline{C}_{13} - \overline{C}_{23} ) + \overline{e}_{3} ( \overline{e}_{1} - \overline{e}_{2} )}{\overline{k}_{3}\overline{C}_{33} + \overline{e}_{3}^{2}} \biggr) \\ &\begin{aligned} s_{8} &= - \frac{h^{2}}{a^{2}} \biggl( \overline{C}_{11} \\ &\quad+ \frac{\overline{e}_{1} ( \overline{e}_{1}\overline{C}_{33} - \overline{e}_{3}\overline{C}_{13} ) - \overline{C}_{13} ( \overline{k}_{3}\overline{C}_{13} + \overline{e}_{1}\overline{e}_{3} )}{\overline{k}_{3}\overline{C}_{33} + \overline{e}_{3}^{2}} \biggr)\end{aligned}\\ &s_{9} = \frac{h^{2}}{a^{2}} \biggl( \frac{\overline{e}_{1} ( \overline{e}_{1}\overline{C}_{33} - \overline{e}_{3}\overline{C}_{13} ) - \overline{C}_{13} ( \overline{k}_{3}\overline{C}_{13} + \overline{e}_{1}\overline{e}_{3} )}{\overline{k}_{3}\overline{C}_{33} + \overline{e}_{3}^{2}} \biggr),\\ &s_{10} = \frac{h^{2}\overline{C}_{11}}{a^{2}} \\ &\begin{aligned}s_{11} &= - \frac{h^{2}}{a^{2}} \biggl( \overline{C}_{12} \\ &\quad + \frac{\overline{e}_{1} ( \overline{e}_{2}\overline{C}_{33} - \overline{e}_{3}\overline{C}_{23} ) - \overline{C}_{13} ( \overline{k}_{3}\overline{C}_{23} + \overline{e}_{2}\overline{e}_{3} )}{\overline{k}_{3}\overline{C}_{33} + \overline{e}_{3}^{2}} \biggr)\end{aligned} \end{aligned}$$
$$\begin{aligned} &s_{12} = \frac{h^{2}}{a^{2}} \biggl( \overline{C}_{12} - \overline{C}_{11} + \frac{ ( \overline{C}_{13} - \overline{C}_{23} ) ( \overline{k}_{3}\overline{C}_{13} + \overline{e}_{1}\overline{e}_{3} ) - ( \overline{e}_{1} - \overline{e}_{2} ) ( \overline{e}_{1}\overline{C}_{33} - \overline{e}_{3}\overline{C}_{13} )}{\overline{k}_{3}\overline{C}_{33} + \overline{e}_{3}^{2}} \biggr),\quad s_{13} = \frac{h^{2}\overline{C}_{12}}{a^{2}} \\ &s_{14} = \frac{h^{2}}{a^{2}} \biggl( m^{2} \overline{C}_{66} + \overline{C}_{22} - \overline{C}_{12} + \frac{ ( \overline{C}_{13} - \overline{C}_{23} ) ( \overline{k}_{3}\overline{C}_{23} + \overline{e}_{2}\overline{e}_{3} ) - ( \overline{e}_{1} - \overline{e}_{2} ) ( \overline{e}_{2}\overline{C}_{33} - \overline{e}_{3}\overline{C}_{23} )}{\overline{k}_{3}\overline{C}_{33} + \overline{e}_{3}^{2}} \biggr) \\ &s_{15} = \frac{h^{2}}{a^{2}} \bigl( m^{2} \overline{C}_{66} + \overline{C}_{22} \bigr),\quad s_{16} = - \frac{mh^{2}}{a^{2}} \biggl( \overline{C}_{12} + \frac{\overline{e}_{1} ( \overline{e}_{2}\overline{C}_{33} - \overline{e}_{3}\overline{C}_{23} ) - \overline{C}_{13} ( \overline{k}_{3}\overline{C}_{23} + \overline{e}_{2}\overline{e}_{3} )}{\overline{k}_{3}\overline{C}_{33} + \overline{e}_{3}^{2}} \biggr),\quad s_{17} = - \frac{mh^{2}\overline{C}_{66}}{a^{2}} \\ &s_{18} = \frac{mh^{2}}{a^{2}} \biggl( \overline{C}_{66} + \overline{C}_{22} - \overline{C}_{12} + \frac{ ( \overline{C}_{13} - \overline{C}_{23} ) ( \overline{k}_{3}\overline{C}_{23} + \overline{e}_{2}\overline{e}_{3} ) - ( \overline{e}_{1} - \overline{e}_{2} ) ( \overline{e}_{2}\overline{C}_{33} - \overline{e}_{3}\overline{C}_{23} )}{\overline{k}_{3}\overline{C}_{33} + \overline{e}_{3}^{2}} \biggr) \end{aligned}$$
$$\begin{aligned} &s_{19} = - \frac{h}{a} \biggl( \frac{\overline{e}_{3}\overline{C}_{13} - \overline{e}_{1}\overline{C}_{33}}{\overline{k}_{3}\overline{C}_{33} + \overline{e}_{3}^{2}} \biggr),\\ & s_{20} = - \frac{h}{a} \biggl( \frac{\overline{e}_{3} ( \overline{C}_{13} - \overline{C}_{23} ) - \overline{C}_{33} ( \overline{e}_{1} - \overline{e}_{2} )}{\overline{k}_{3}\overline{C}_{33} + \overline{e}_{3}^{2}} \biggr),\\ & s_{21} = \frac{mh}{a} \biggl( \frac{\overline{k}_{3}\overline{C}_{23} + \overline{e}_{2}\overline{e}_{3}}{\overline{k}_{3}\overline{C}_{33} + \overline{e}_{3}^{2}} \biggr)\\ &s_{22} = \frac{mh^{2}\overline{C}_{66}}{a^{2}},\\ &\begin{aligned} s_{23} &= \frac{mh^{2}}{a^{2}} \biggl( \overline{C}_{12} \\ &\quad + \frac{\overline{e}_{2} ( \overline{e}_{1}\overline{C}_{33} - \overline{e}_{3}\overline{C}_{13} ) - \overline{C}_{23} ( \overline{k}_{3}\overline{C}_{13} + \overline{e}_{1}\overline{e}_{3} )}{\overline{k}_{3}\overline{C}_{33} + \overline{e}_{3}^{2}} \biggr)\end{aligned}\\ &\begin{aligned} s_{24} &= \frac{mh^{2}}{a^{2}} \biggl( \overline{C}_{22} + 2 \overline{C}_{66}\\ &\quad + \frac{\overline{e}_{2} ( \overline{e}_{2}\overline{C}_{33} - \overline{e}_{3}\overline{C}_{23} ) - \overline{C}_{23} ( \overline{k}_{3}\overline{C}_{23} + \overline{e}_{2}\overline{e}_{3} )}{\overline{k}_{3}\overline{C}_{33} + \overline{e}_{3}^{2}} \biggr),\end{aligned}\\ & s_{25} = - \frac{h^{2}\overline{C}_{66}}{a^{2}},\quad s_{26} = \frac{h^{2}\overline{C}_{66}}{a^{2}}\\ &s_{27} = - \frac{2h^{2}\overline{C}_{66}}{a^{2}},\\ &\begin{aligned} s_{28} &= \frac{h^{2}}{a^{2}} \biggl( m^{2}\overline{C}_{22} + 2 \overline{C}_{66} \\ &\quad + \frac{m^{2}\overline{e}_{2} ( \overline{e}_{2}\overline{C}_{33} - \overline{e}_{3}\overline{C}_{23} ) - m^{2}\overline{C}_{23} ( \overline{k}_{3}\overline{C}_{23} + \overline{e}_{2}\overline{e}_{3} )}{\overline{k}_{3}\overline{C}_{33} + \overline{e}_{3}^{2}} \biggr)\end{aligned}\\ &s_{29} = \frac{mh}{a} \biggl( \frac{\overline{e}_{3}\overline{C}_{23} - \overline{e}_{2}\overline{C}_{33}}{\overline{k}_{3}\overline{C}_{33} + \overline{e}_{3}^{2}} \biggr),\quad s_{30} = - \frac{h\overline{e}_{5}}{a\overline{C}_{55}},\\ & s_{31} = - \frac{mh\overline{e}_{4}}{a\overline{C}_{44}},\quad s_{32} = \frac{h^{2}}{a^{2}} \biggl( \frac{\overline{k}_{1}\overline{C}_{55} + \overline{e}_{5}^{2}}{\overline{C}_{55}} \biggr),\\ & s_{33} = - \frac{h^{2}\overline{e}_{5}^{2}}{a^{2}\overline{C}_{55}}\\ &s_{34} = - \frac{m^{2}h^{2}}{a^{2}} \biggl( \frac{\overline{k}_{2}\overline{C}_{44} + \overline{e}_{4}^{2}}{\overline{C}_{44}} \biggr),\\ & s_{35} = \frac{\overline{e}_{3}}{\overline{k}_{3}\overline{C}_{33} + \overline{e}_{3}^{2}},\\ & s_{36} = \frac{h}{a} \biggl( \frac{\overline{e}_{1}\overline{C}_{33} - \overline{e}_{3}\overline{C}_{13}}{\overline{k}_{3}\overline{C}_{33} + \overline{e}_{3}^{2}} \biggr),\\ & s_{37} = \frac{h}{a} \biggl( \frac{\overline{e}_{2}\overline{C}_{33} - \overline{e}_{3}\overline{C}_{23}}{\overline{k}_{3}\overline{C}_{33} + \overline{e}_{3}^{2}} \biggr) \\ &s_{38} = \frac{mh}{a} \biggl( \frac{\overline{e}_{2}\overline{C}_{33} - \overline{e}_{3}\overline{C}_{23}}{\overline{k}_{3}\overline{C}_{33} + \overline{e}_{3}^{2}} \biggr),\quad s_{39} = - \frac{\overline{C}_{33}}{\overline{k}_{3}\overline{C}_{33} + \overline{e}_{3}^{2}} \end{aligned}$$

Appendix B

$$\begin{aligned} K &= \biggl( \frac{k_{w}h}{C_{11}} + \frac{m^{2}k_{g}h}{a^{2}C_{11}}\frac{1}{\overline{r}_{i}^{2}} \biggr)I_{N - 2} - \frac{k_{g}h}{a^{2}C_{11}}\frac{1}{\overline{r}_{i}}g_{ij}^{ ( 1 )} \\ &\quad - \frac{k_{g}h}{a^{2}C_{11}}g_{ij}^{ ( 2 )} \quad ( i,j = 2,\ldots,N - 1 ) \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jodaei, A. 3D elasticity solution for static analysis of functionally graded piezoelectric annular plates on elastic foundations using SSDQM. Meccanica 49, 215–237 (2014). https://doi.org/10.1007/s11012-013-9786-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-013-9786-8

Keywords

Navigation