Meccanica

, Volume 48, Issue 9, pp 2281–2298 | Cite as

Optimal design of steel frames accounting for buckling

  • Salvatore Benfratello
  • Francesco Giambanco
  • Luigi Palizzolo
  • Pietro Tabbuso
Article

Abstract

A formulation of a special design problem devoted to elastic perfectly plastic steel frame structures subjected to different combinations of static and dynamic loads is presented. In particular, a minimum volume design problem formulation is presented and the structure is designed to be able to elastically behave for the assigned fixed loads, to elastically shakedown in presence of serviceability load conditions and to prevent the instantaneous collapse for suitably chosen combinations of fixed and ultimate seismic loadings as well as of fixed and wind actions. The actions that the structure must suffer are evaluated by making reference to the actual Italian seismic code. The dynamic response of the structure is performed by utilizing a modal technique. In order to prevent other undesired collapse modes further constraints are introduced in the relevant optimization problem taking into account the risk of element buckling. Different applications devoted to flexural frames conclude the paper. The sensitivity of the structural response has been investigated on the grounds of the determination and interpretation of the Bree diagrams of the obtained optimal structures.

Keywords

Optimal design Steel frames Dynamic loads Buckling P-Delta effect 

References

  1. 1.
    Banichuk NV (1990) Introduction to optimization of structures. Springer, New York CrossRefMATHGoogle Scholar
  2. 2.
    Brousse P (1988) Optimization in mechanics: problems and methods. Elsevier, Amsterdam MATHGoogle Scholar
  3. 3.
    Cherkaev A (2000) Variational methods in structural optimization. Springer, New York CrossRefGoogle Scholar
  4. 4.
    Choi KK, Kim NH (2005) Structural sensitivity analysis and optimization: linear systems. Springer, Berlin Google Scholar
  5. 5.
    Gajewski A, Zyezkowski M (1988) Optimal structural design under stability constraints. Kluwer, Dordrecht CrossRefMATHGoogle Scholar
  6. 6.
    Gallagher RH, Zienkiewicz OC (1973) Optimum structural design. Wiley, London Google Scholar
  7. 7.
    Haftka RT, Gürdal Z, Kamat MP (1990) Elements of structural optimization. Kluwer, Dordrecht CrossRefMATHGoogle Scholar
  8. 8.
    Haug EJ, Choi KK, Komkov V (1986) Design sensitivity analysis of structural systems. Academic Press, New York MATHGoogle Scholar
  9. 9.
    Kirsch U (1993) Structural optimization: fundamentals and applications. Springer, Berlin CrossRefMATHGoogle Scholar
  10. 10.
    Majid KI (1974) Optimum design of structures. Newnes–Butterworths, London Google Scholar
  11. 11.
    Massonet CE, Save M (1965) Plastic analysis and design. Blaisdell, New York Google Scholar
  12. 12.
    Rozvany GIN (1976) Optimal design of flexural systems. Pergamon Press, Oxford Google Scholar
  13. 13.
    Rozvany GIN (1989) Structural design via optimality criteria. Kluwer, Dordrecht CrossRefMATHGoogle Scholar
  14. 14.
    Rozvany GIN (1997) Topology optimization in structural mechanics. Springer, Berlin MATHGoogle Scholar
  15. 15.
    Save MA, Prager W (1985) Structural optimization. Plenum, New York MATHGoogle Scholar
  16. 16.
    Stadler W (1988) Multicriteria optimization in engineering and in the sciences. Plenum, New York CrossRefMATHGoogle Scholar
  17. 17.
    Cinquini C, Guerlement G, Lamblin D (1980) Finite element iterative methods for optimal elastic design of circular plates. Comput Struct 12(1):85–92 CrossRefMATHGoogle Scholar
  18. 18.
    Cinquini C, Sacchi G (1981) A note on the optimal elastic design for given deflection. In: Haug EJ, Cea J (eds) Optimization of distributed parameter structures, vol 1, pp 383–398 CrossRefGoogle Scholar
  19. 19.
    Cohn MZ, Parimi SR (1973) Optimal design of plastic structures for fixed and shakedown loadings. J Appl Mech 40:595–599 CrossRefGoogle Scholar
  20. 20.
    Giambanco F, Palizzolo L (1995) Optimality conditions for shakedown design of trusses. Comput Mech 16(6):369–378 MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Giambanco F, Palizzolo L, Cirone L (1998) Computational methods for optimal shakedown design of FE structures. Struct Optim 15(3/4):284–295 CrossRefGoogle Scholar
  22. 22.
    Giambanco F, Palizzolo L, Polizzotto C (1994) Optimal shakedown design of beam structures. Struct Optim 8:156–167 CrossRefGoogle Scholar
  23. 23.
    Giambanco F, Palizzolo L, Polizzotto C (1994) Optimal shakedown design of circular plates. J Eng Mech 120(12):2535–2555 CrossRefGoogle Scholar
  24. 24.
    König JA (1975) On optimum shakedown design. In: Sawczuk A, Mroz Z (eds) Optimization in structure design. Springer, Berlin, pp 405–414 CrossRefGoogle Scholar
  25. 25.
    Atkociunas J (2011) Optimal shakedown design of elastic-plastic structures. Technika, Vilnius Google Scholar
  26. 26.
    Maier G, Srinivasan R, Save M (1976) Optimal plastic design. J Struct Mech 4:349–378 CrossRefGoogle Scholar
  27. 27.
    Maier G, Zavelani Rossi A, Benedetti D (1972) A finite element approach to optimal design of plastic structures in plane stress. Int J Numer Methods Eng 4:455–473 CrossRefMATHGoogle Scholar
  28. 28.
    Caffarelli A, Giambanco F, Palizzolo L (2002) Optimal design: a comparison between different criteria. In: The second international conference on advances in structural engineering and mechanics, Busan, Korea Google Scholar
  29. 29.
    Palizzolo L (2004) Optimization of continuous elastic perfectly plastic beams. Comput Struct 82(4–5):397–411 CrossRefGoogle Scholar
  30. 30.
    Palizzolo L, Caffarelli A (2005) A multicriteria optimal design for FE discretized structures. In: International conference on computational & experimental engineering & science, ICCES’05, Chennai, India, December 1–10. Tech Science Press, Duluth Google Scholar
  31. 31.
    Caffarelli A, Giambanco F, Palizzolo L (2002) No ratchet design of trusses. In: The second international conference on advances in structural engineering and mechanics, Busan, Korea, August 21–23 Google Scholar
  32. 32.
    Giambanco F, Palizzolo L, Caffarelli A (2002) An optimal plastic shakedown design. In: The sixth international conference on computational structures technology, Prague, Czech Republic, September 4–6 Google Scholar
  33. 33.
    Palizzolo L (2000) Non-ratchet design of beam structures. In: Proceedings of IASS–IACM 2000, fourth international colloquium on computation of shell & spatial structures, Chania, Crete Google Scholar
  34. 34.
    Giambanco F, Palizzolo L, Caffarelli A (2004) Computational procedures for plastic shakedown design of structures. J Struct Multidiscip Optim 28(5):317–329 CrossRefGoogle Scholar
  35. 35.
    Palizzolo L (2004) Optimal design of trusses according to a plastic shakedown criterion. J Appl Mech 71(2):240–246 CrossRefMATHGoogle Scholar
  36. 36.
    Benfratello S, Giambanco F, Palizzolo L (2009) Optimal design of structures under dynamic loading. In: XIX congresso nazionale AIMETA, Ancona (Italy), September 14–17 Google Scholar
  37. 37.
    Benfratello S, Giambanco F, Palizzolo L (2010) P-Delta effect in structural optimization. In: 2nd international conference on engineering optimization, EngOpt 2010, Lisbona, Portogallo, September 6–9 Google Scholar
  38. 38.
    Giambanco F, Benfratello S, Palizzolo L, Tabbuso P (2011) Multicriterion design of frames with constraints on buckling. In: Atti del XX congresso nazionale AIMETA, Bologna, September 12–15 Google Scholar
  39. 39.
    Giambanco F, Palizzolo L, Caffarelli A (2005) Optimum design of structures with limited ductility. In: Henrnandez S, Brebbia CA (eds) Ninth international conference on computer aided optimum design in engineering (OPTI 2005), Skiathos, Grecia, May 23–25. WIT Press, Ashurst Google Scholar
  40. 40.
    Szyszkowski W, Watson LG (1988) Optimization of the buckling load of columns and frames. Eng Struct 10(4):249–256 CrossRefGoogle Scholar
  41. 41.
    Wang CM, Kitipornchai S, Thevendran V (1990) Optimal designs of I-beams against lateral buckling. J Eng Mech 116(9):1902–1923 CrossRefGoogle Scholar
  42. 42.
    Panigrahi SK, Chakravety S, Mishra BK (2009) Vibration based damage detection in a uniform strength beam using genetic algorithm. Meccanica 44:697–710 MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Paya-Zaforteza I, Yepes V, González-Vidosa F, Hospitaler A (2010) On the Weibull cost estimation of building frames designed by simulated annealing. Meccanica 45:693–704 CrossRefMATHGoogle Scholar
  44. 44.
    Ghashochi Bargh H, Sadr MH (2012) Stacking sequence optimization of composite plates for maximum fundamental frequency using particle swarm optimization algorithm. Meccanica 47:719–730 MathSciNetCrossRefGoogle Scholar
  45. 45.
    Corne D, Dorigo M, Glover F (1999) New ideas in optimization. McGraw-Hill, Cambridge Google Scholar
  46. 46.
    Mitchell M (1998) An introduction to genetic algorithms. MIT Press, Cambridge MATHGoogle Scholar
  47. 47.
    Nocedal J, Wright SJ (1999) Numerical optimization. Springer, New York CrossRefMATHGoogle Scholar
  48. 48.
    Repubblica Italiana (2008) Consiglio Superiore dei Lavori Pubblici, Norme Tecniche per le Costruzioni. D.M. 14 gennaio 2008 Google Scholar
  49. 49.
    European Committee for Standardization (1992) Eurocode 3: Design of steel structures, Part 1-1: General rules and rules for buildings Google Scholar
  50. 50.
    Scibilia N (2010) Progetto di strutture in acciaio. Dario Flaccovio Editore, Palermo, Italy Google Scholar
  51. 51.
    Merkevičiūtė D, Atkočiūnas J (2006) Optimal shakedown design of metal structures under stiffness and stability constraints. J Constr Steel Res 62:1270–1275 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Salvatore Benfratello
    • 1
  • Francesco Giambanco
    • 1
  • Luigi Palizzolo
    • 1
  • Pietro Tabbuso
    • 1
  1. 1.Department of Civil, Environmental, Aerospace, Materials Engineering (DICAM)University of PalermoPalermoItaly

Personalised recommendations