Skip to main content
Log in

Experimental analysis and modeling of self-standing curved crystals for focusing of X-rays

  • MICRO- OR NANO-MECHANICS
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Novel applications can be attained through the usage of bent crystals as optical components for the challenge of focusing hard X and γ rays by Bragg diffraction. Nuclear astrophysics, nuclear medicine and homeland security would highly benefit from such optics, because they all share the same need for efficient X- and γ-ray focusing systems. With this aim, self-standing bent silicon crystals have been reproducibly attained thanks to the method of surface grooving. An extensive study has been worked out to understand the process of substrate deformation. By adjusting experimental parameters, very good control of the curvature is afforded. Process of deformation has been modeled in terms of irreversible compression occurring in the material close to the grooves. The underlying silicon was treated as an anisotropic medium elastically reacting to the state of stress provided by the grooves. Comparison between experimental results and theoretical expectations was satisfactorily achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Scandale W, Carnera A, Della Mea G, De Salvador D, Milan R, Vomiero A, Baricordi S, Dalpiaz P, Fiorini M, Guidi V, Martinelli G, Mazzolari A, Milan E, Ambrosi G, Azzarello P, Battiston R, Bertucci B, Burger WJ, Ionica M, Zuccon P, Cavoto G, Santacesaria R, Valente P, Vallazza E, Afonin AG, Baranov VT, Chesnokov YA, Kotov VI, Maisheev VA, Yazynin IA, Afanasiev SV, Kovalenko AD, Taratin AM, Denisov AS, Gavrikov YA, Ivanov YM, Ivochkin VG, Kosyanenko SV, Petrunin AA, Skorobogatov VV, Suvorov VM, Bolognini D, Foggetta L, Hasan S, Prest M (2008) Phys Rev (ST Accel Beams) 11:063501

    Article  ADS  Google Scholar 

  2. Scandale W, Still DA, Carnera A, Della Mea G, De Salvador D, Milan R, Vomiero A, Baricordi S, Dalpiaz P, Fiorini M, Guidi V, Martinelli G, Mazzolari A, Milan E, Ambrosi G, Azzarello P, Battiston R, Bertucci B, Burger WJ, Ionica M, Zuccon P, Cavoto G, Santacesaria R, Valente P, Vallazza E, Afonin AG, Baranov VT, Chesnokov YA, Kotov VI, Maisheev VA, Yaznin IA, Afanasiev SV, Kovalenko AD, Taratin AM, Denisov AS, Gavrikov YA, Ivanov YM, Ivochkin VG, Kosyanenko SV, Petrunin AA, Skorobogatov VV, Suvorov VM, Bolognini D, Foggetta L, Hasan S, Prest M (2007) Phys Rev Lett 98:154801

    Article  ADS  Google Scholar 

  3. Bellucci S, Bini S, Biryukov VM, Chesnokov YA, Dadagov S, Giannini G, Guidi V, Ivanov YM, Kotov VI, Maisheev VA, Malag C, Martinelli G, Petrunin AA, Skorobogatov VV, Stefancich M, Vincenzi D (2003) Phys Rev Lett 90:034801

    Article  ADS  Google Scholar 

  4. Pisa A, Frontera F, Loffredo G, Pellicciotta D, Auricchio N (2005) Exp Astron 20:219

    Article  ADS  Google Scholar 

  5. Lund N (1992) Exp Astron 2:259

    Article  MathSciNet  ADS  Google Scholar 

  6. Roa D, Smither R, Zhang X, Nie K, Shieh Y, Ramsinghani N, Milne N, Kuo J, Redpath J, Al-Ghazi M, Caligiuri P (2005) Exp Astron 20:229

    Article  ADS  Google Scholar 

  7. Natalucci L, Ubertini P, Bazzano A, Caroli E, Federici M, Quadrini E, Vittori R (2009) Wirel Pers Commun 51:725. doi:10.1007/s11277-009-9769-1

    Article  Google Scholar 

  8. Barrière N, Guidi V, Bellucci V, Camattari R, Buslaps T, Rousselle J, Roudil G, Arnaud FX, Bastie P, Natalucci L (2010) J Appl Crystallogr 43:1519

    Article  Google Scholar 

  9. Bellucci V, Camattari R, Guidi V, Neri I, Barrière N (2011) Exp Astron 31:45. doi:10.1007/s10686-011-9226-5

    Article  ADS  Google Scholar 

  10. Guidi V, Bellucci V, Camattari R, Neri I (2011) J Appl Crystallogr 44:1255

    Article  Google Scholar 

  11. Guidi V, Bellucci V, Camattari R, Neri I (2013) Nucl Instrum Methods B (in press). doi:10.1016/j.nimb.2013.01.070

    Google Scholar 

  12. Smither RK, Saleem KA, Roa DE, Beno MA, Ballmoos PV, Skinner GK (2005) Exp Astron 20:201

    Article  ADS  Google Scholar 

  13. Authier A (2001) Dynamical theory of X-ray diffraction. Oxford University Press, London

    Google Scholar 

  14. Gogotsi Y, Baek C, Kirscht F (1999) Semicond Sci Technol 14:936. doi:10.1088/0268-1242/14/10/310

    Article  ADS  Google Scholar 

  15. Bellucci V, Camattari R, Guidi V, Mazzolari A (2011) Thin Solid Films 520:1069

    Article  ADS  Google Scholar 

  16. Erdem Alaca B, Saif M, Sehitoglu H (2002) Acta Mater 50(5):1197. doi:10.1016/S1359-6454(01)00421-9

    Article  Google Scholar 

  17. Stoney GG (1909) Proc R Soc A 82:172. doi:10.1098/rspa.1909.0021

    Article  ADS  Google Scholar 

  18. Guidi V, Lanzoni L, Mazzolari A (2011) Thin Solid Films 520:1074

    Article  ADS  Google Scholar 

  19. Lekhnitskii S, Tsai S, Cheron T (1956) Anisotropic plates. Gordon & Breach, New York

    Google Scholar 

Download references

Acknowledgements

We acknowledge partial financial support by the Italian Space Agency (ASI) under LAUE project. We also acknowledge Professor Carmela Vaccaro (Earth Sciences Department of Ferrara) and Dr. Chiara Soffritti (Engineering Department of Ferrara) for helpful discussion and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Guidi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camattari, R., Guidi, V., Lanzoni, L. et al. Experimental analysis and modeling of self-standing curved crystals for focusing of X-rays. Meccanica 48, 1875–1882 (2013). https://doi.org/10.1007/s11012-013-9734-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-013-9734-7

Keywords

Navigation