Skip to main content

Water slippage on hydrophobic nanostructured surfaces: molecular dynamics results for different filling levels

Abstract

Structured hydrophobic surfaces may present high wall slippage due to the microscopic details of wetting. This behavior can be exploited for reducing wall slippage in micro- and nanofluidic devices. In this work we focus on the influence of meniscus curvature and pressure on the slip length. We use realistic atomistic potentials in order to simulate liquid water (TIP4P/2005) flowing on a smooth/patterned silane (OTS) coated hydrophobic surface. Results confirm that even at the nanoscale the form of the meniscus has a strong influence on slippage. Continuum Navier-Stokes simulations show good agreement with the atomistic picture only if the shape of the meniscus and position of the triple line are correctly prescribed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Squires T, Quake S (2005) Rev Mod Phys 77(3):977

    ADS  Article  Google Scholar 

  2. 2.

    Chinappi M, Melchionna S, Casiola C, Succi S (2008) J Chem Phys 129:124717

    ADS  Article  Google Scholar 

  3. 3.

    Li Z (2009) Phys Rev E 80(6):061204

    ADS  Article  Google Scholar 

  4. 4.

    Li H, Yoda M (2010) J Fluid Mech 662:269–287

    Article  MATH  Google Scholar 

  5. 5.

    Zhu L, Neto C, Attard P (2012) Langmuir 28(20):7768

    Article  Google Scholar 

  6. 6.

    Bouzigues C, Tabeling P, Bocquet L (2008) Phys Rev Lett 101(11):114503

    ADS  Article  Google Scholar 

  7. 7.

    Tsai P, Peters A, Pirat C, Wessling M, Lammertink R, Lohse D (2009) Phys Fluids 21:112002

    ADS  Article  Google Scholar 

  8. 8.

    Zhang H, Zhang Z, Ye H (2012) Microfluid Nanofluid 12:107–115

    Article  Google Scholar 

  9. 9.

    Lauga E, Brenner M, Stone H (2005) Microfluidics: The no-slip boundary condition. In: Handbook of experimental fluid dynamics (Chap. 15). Springer, Berlin

    Google Scholar 

  10. 10.

    Chinappi M, Casciola C (2010) Phys Fluids 22:042003

    ADS  Article  Google Scholar 

  11. 11.

    Maali A, Bhushan B (2012) Philos Trans R Soc, Math Phys Eng Sci 370(1967):2304

    ADS  Article  Google Scholar 

  12. 12.

    Joseph P, Tabeling P (2005) Phys Rev E 71(3):035303

    ADS  Article  Google Scholar 

  13. 13.

    Cottin-Bizonne C, Steinberger A, Cross B, Raccurt O, Charlaix E (2008) Langmuir 24(4):1165

    Article  Google Scholar 

  14. 14.

    Lee C, Kim C (2011) In: Langmuir: the ACS journal of surfaces and colloids 27(7), p 4243

    Google Scholar 

  15. 15.

    Ming Z, Jian L, Chunxia W, Xiaokang Z, Lan C (2011) Soft Matter 7(9):4391

    ADS  Article  Google Scholar 

  16. 16.

    Ybert C, Barentin C, Cottin-Bizonne C, Joseph P, Bocquet L (2007) Phys Fluids 19:123601

    ADS  Article  Google Scholar 

  17. 17.

    Ng C, Wang C (2010) Microfluid Nanofluid 8(3):361

    Article  Google Scholar 

  18. 18.

    Sbragaglia M, Prosperetti A (2007) Phys Fluids 19:043603

    ADS  Article  Google Scholar 

  19. 19.

    Benzi R, Biferale L, Sbragaglia M, Succi S, Toschi F (2006) Europhys Lett 74:651

    MathSciNet  ADS  Article  Google Scholar 

  20. 20.

    Teo C, Khoo B (2010) Microfluid Nanofluid 9(2):499

    Article  Google Scholar 

  21. 21.

    Lauga E, Stone H (2003) J Fluid Mech 489(1):55

    MathSciNet  ADS  Article  MATH  Google Scholar 

  22. 22.

    Cottin-Bizonne C, Barrat J, Bocquet L, Charlaix E (2003) Nat Mater 2(4):237

    ADS  Article  Google Scholar 

  23. 23.

    Cottin-Bizonne C, Cross B, Steinberger A, Charlaix E (2005) Phys Rev Lett 94:056102

    ADS  Article  Google Scholar 

  24. 24.

    Steinberger A, Cottin-Bizonne C, Kleimann P, Charlaix E (2007) Nat Mater 6(9):665

    ADS  Article  Google Scholar 

  25. 25.

    Thompson P, Troian S (1997) Nature 389(6649):360

    ADS  Article  Google Scholar 

  26. 26.

    Huang D, Sendner C, Horinek D, Netz R, Bocquet L (2008) Phys Rev Lett 101(22):226101

    ADS  Article  Google Scholar 

  27. 27.

    Cassie A, Baxter S (1944) Trans Faraday Soc 40:546

    Article  Google Scholar 

  28. 28.

    Lafuma A Quéré D et al. (2003) Nat Mater 2(7):457

    ADS  Article  Google Scholar 

  29. 29.

    Palumbo F, Di Mundo R, Cappelluti D, d’Agostino R (2011) Plasma Process Polym 8(2):118

    Google Scholar 

  30. 30.

    Wenzel R (1936) Ind Eng Chem 28(8):988

    Article  Google Scholar 

  31. 31.

    Afferrante L, Carbone G (2010) J Phys Condens Matter 22:325107

    Article  Google Scholar 

  32. 32.

    Giacomello A, Chinappi M, Meloni S, Casciola CM (2012) Phys Rev Lett 109(22):226102

    ADS  Article  Google Scholar 

  33. 33.

    Savoy ES, Escobedo FA (2012) Langmuir 28:3412

    Article  Google Scholar 

  34. 34.

    Giacomello A, Meloni S, Chinappi M, Casciola C (2012) Langmuir 28(29):10764

    Article  Google Scholar 

  35. 35.

    Bolognesi G, Pirat C, Cottin-Bizonne E, Guene M, Teisseire J (2013) Soft Matter 9:2239

    ADS  Article  Google Scholar 

  36. 36.

    Hyväluoma J, Kunert C, Harting J (2011) J Phys Condens Matter 23:184106

    ADS  Article  Google Scholar 

  37. 37.

    Humphrey W, Dalke A, Schulten K et al. (1996) J Mol Graph 14(1):33

    Article  Google Scholar 

  38. 38.

    Abascal J, Vega C (2005) J Chem Phys 123:234505

    ADS  Article  Google Scholar 

  39. 39.

    Chinappi M, Gala F, Zollo G, Casciola C (2011) Philos Trans R Soc, Math Phys Eng Sci 369(1945):2537

    ADS  Article  Google Scholar 

  40. 40.

    Vega C, de Miguel E (2007) J Chem Phys 126(15):4707

    Article  Google Scholar 

  41. 41.

    Gala F, Zollo G (2011) Phys Rev B 84(19):195323

    ADS  Article  Google Scholar 

  42. 42.

    Phillips J, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R, Kale L, Schulten K (2005) J Comput Chem 26(16):1781

    Article  Google Scholar 

  43. 43.

    Tuteja A, Choi W, Ma M, Mabry JM, Mazzella SA, Rutledge GC, McKinley GH, Cohen RE (2007) Science 318(5856):1618

    ADS  Article  Google Scholar 

  44. 44.

    Kell G, Whalley E (1975) J Chem Phys 62(9):3496

    ADS  Article  Google Scholar 

  45. 45.

    An T, Cho S, Choi W, Kim J, Lim S, Lim G (2011) Soft Matter 7(21):9867

    ADS  Article  Google Scholar 

  46. 46.

    Brown P, Talbot E, Wood T, Bain C, Badyal J (2012) Langmuir 28(38):13712–13719

    Article  Google Scholar 

  47. 47.

    Davis A, Lauga E (2009) Phys Fluids 21:011701

    ADS  Article  Google Scholar 

Download references

Acknowledgements

Part of the computing resources were made available by CASPUR (HPC grants 2011 and 2012).

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Chinappi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gentili, D., Chinappi, M., Bolognesi, G. et al. Water slippage on hydrophobic nanostructured surfaces: molecular dynamics results for different filling levels. Meccanica 48, 1853–1861 (2013). https://doi.org/10.1007/s11012-013-9717-8

Download citation

Keywords

  • Nanofluidics
  • Liquid slippage
  • Superhydrophobic surfaces