Skip to main content
Log in

3-D consolidation of multilayered porous medium with anisotropic permeability and compressible pore fluid

  • Brief Notes and Discussions
  • Published:
Meccanica Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Degrande G, De Roec G, Van Den Broeck P et al. (1997) Application of a direct stiffness method to wave propagation in multiphase poroelastic media. Meccanica 32:205–214

    Article  MATH  Google Scholar 

  2. Pal D, Hiremath PS (2010) Computational modeling of heat transfer over an unsteady stretching surface embedded in a porous medium. Meccanica 45:415–424

    Article  MathSciNet  Google Scholar 

  3. Mukhopadhyay S, Layek GC (2012) Effects of variable fluid viscosity on flow past a heated stretching sheet embedded in a porous medium in presence of heat source/sink. Meccanica 47:863–876

    Article  MathSciNet  Google Scholar 

  4. Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12:155–164

    Article  ADS  MATH  Google Scholar 

  5. McNamee J, Gibson RE (1960) Displacement functions and linear transforms applied to diffusion through porous elastic media. Q J Mech Appl Math 13:98–111

    Article  MathSciNet  MATH  Google Scholar 

  6. McNamee J, Gibson RE (1960) Plane strain and axially symmetric problem of the consolidation of a semi-infinite clay stratum. Q J Mech Appl Math 13:210–227

    Article  MathSciNet  MATH  Google Scholar 

  7. Schiffman RL, Fungaroli AA (1965) Consolidation due to tangential loads. In: Proc 6th int conf soil mech found eng, vol 1, pp 188–192

    Google Scholar 

  8. Booker JR, Small JC (1987) A method of computing the consolidation behavior of layered soils using direct numerical inversion of Laplace transforms. Int J Numer Anal Methods Geomech 11:363–380

    Article  MATH  Google Scholar 

  9. Vardoulakis I, Harnpattanapanich T (1986) Numerical Laplace-Fourier transform inversion technique for layered-soil consolidation problems: I. Fundamental solutions and validation. Int J Numer Anal Methods Geomech 10:347–365

    Article  MATH  Google Scholar 

  10. Pan E (1999) Green’s functions in layered poroelastic half-space. Int J Numer Anal Methods Geomech 23:1631–1653

    Article  MATH  Google Scholar 

  11. Wang JG, Fang SS (2001) The state vector solution of axisymmetric Biot’s consolidation problems for multilayered poroelastic media. Mech Res Commun 28:671–677

    Article  MATH  Google Scholar 

  12. Wang JG, Fang SS (2003) State space solution of non-axisymmetric Biot consolidation problems for multilayered poroelastic media. Int J Eng Sci 41:1799–1813

    Article  MATH  Google Scholar 

  13. Ai ZY, Han J (2006) A solution to plane strain consolidation of multi-layered soils. In: Luna R, Hong Z, Ma G, Huang M (eds) Soil and rock behavior and modeling ASCE GSP, Proc GeoShanghai int conf 2006, Shanghai, China, June 6–8, pp 176–283

    Google Scholar 

  14. Ai ZY, Cheng ZY, Han J (2008) State space solution to three-dimensional consolidation of multi-layered soils. Int J Eng Sci 46:486–498

    Article  Google Scholar 

  15. Ai ZY, Cheng ZY (2009) Transfer matrix solutions to plane-strain and three-dimensional Biot’s consolidation of multi-layered soils. Mech Mater 41:244–251

    Article  Google Scholar 

  16. Ai ZY, Wang QS, Han J (2010) Transfer matrix solutions to axisymmetric and non-axisymmetric consolidation of multilayered soils. Acta Mech 211:155–172

    Article  MATH  Google Scholar 

  17. Verruijt A (1971) Displacement functions in the theory of consolidation or thermoelasticity. J Appl Math Phys 22:891–898

    Article  MATH  Google Scholar 

  18. Ai ZY, Wang QS (2008) A new analytical solution for axis-symmetric Biot’s consolidation of a finite soil layer. Appl Math Mech 29:1617–1624

    Article  MATH  Google Scholar 

  19. Ai ZY, Wang QS, Wu C (2008) A new method for solving Biot’s consolidation of a finite soil layer in the cylindrical coordinate system. Acta Mech Sin 24:691–697

    Article  MathSciNet  ADS  Google Scholar 

  20. Biot MA (1955) Theory of elasticity and consolidation for a porous anisotropic solid. J Appl Phys 26:182–185

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Mei GX Yin JH Zai JM et al. (2004) Consolidation analysis of a cross-anisotropic homogeneous elastic soil using a finite numerical method. Int J Numer Anal Methods Geomech 28:111–129

    Article  MATH  Google Scholar 

  22. Singh SJ, Rani S, Kumar R (2007) Quasi-static deformation of a poroelastic half-space with anisotropic permeability by two-dimensional surface loads. Geophys J Int 170:1311–1327

    Article  ADS  Google Scholar 

  23. Ai ZY, Wu C (2009) Plane strain consolidation of soil layer with anisotropic permeability. Appl Math Mech 30:1437–1444

    Article  MathSciNet  MATH  Google Scholar 

  24. Cheng AH-D, Liggett JA (1984) Boundary integral equation method for linear porous-elasticity with applications to soil consolidation. Int J Numer Methods Eng 20:255–278

    Article  MATH  Google Scholar 

  25. Yue ZQ, Selvadurai APS, Law KT (1994) Excess pore water pressure in a poroelastic seabed saturated with a compressible fluid. Can Geotech J 31:989–1003

    Article  Google Scholar 

  26. Senjuntichai T, Rajapakse RKND (1995) Exact stiffness method for quasi-statics of a multi-layered poroelastic medium. Int J Solids Struct 32:1535–1553

    Article  MATH  Google Scholar 

  27. Ai ZY, Wu C, Han J (2008) Transfer matrix solutions for three-dimensional consolidation of a multi-layered soil with compressible constituents. Int J Eng Sci 46:1111–1119

    Article  MathSciNet  MATH  Google Scholar 

  28. Booker JR, Carter JP (1987) Withdrawal of a compressible pore fluid from a point sink in an isotropic elastic half space with anisotropic permeability. Int J Numer Anal Methods Geomech 23:369–385

    MATH  Google Scholar 

  29. Chen GJ (2004) Consolidation of multilayered half space with anisotropic permeability and compressible constituents. Int J Solids Struct 41:4567–4586

    Article  MATH  Google Scholar 

  30. Singh SJ, Kumar R, Rani S (2009) Consolidation of a poroelastic half-space with anisotropic permeability and compressible constituents by axisymmetric surface loading. J Earth Syst Sci 118:563–574

    Article  ADS  Google Scholar 

  31. Bahar LY (1972) Transfer matrix approach to layered systems. ASCE J Eng Mech Div 98:1159–1172

    Google Scholar 

  32. Soldatos KP, Ye JQ (1995) Stationary thermoelastic analysis of homogeneous orthotropic and cross-ply laminated cylinders and cylindrical panels. Acta Mech 110:1–18

    Article  MATH  Google Scholar 

  33. Yue ZQ (1996) On elastostatics of multi-layered solids subjected to general surface traction. Q J Mech Appl Math 49:471–499

    Article  MATH  Google Scholar 

  34. Ye JQ (2002) Laminated composite plates and shells: 3D modelling. Springer, London

    Google Scholar 

  35. Shuvalov AL, Soldatos KP (2003) On the successive approximation method for three-dimensional analysis of radially inhomogeneous tubes with an arbitrary cylindrical anisotropy. J Sound Vib 259:233–239

    Article  ADS  Google Scholar 

  36. Ai ZY, Yue ZQ, Tham LG, Yang M (2002) Extended Sneddon and Muki solutions for multilayered elastic materials. Int J Eng Sci 40:1453–1483

    Article  MathSciNet  MATH  Google Scholar 

  37. Sneddon IN (1972) The use of integral transform. McGraw-Hill, New York

    Google Scholar 

  38. Talbot A (1979) The accurate numerical inversion of Laplace transforms. J Inst Math Appl 23:97–120

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang RJ, Martin FL, Roth F (2003) Computation of deformation induced by earthquakes in a multi-layered elastic crust—FORTRAN programs EDGRN/EDCMP. Comput Geosci 29:195–207

    Article  ADS  Google Scholar 

  40. Wang R (1999) A simple orthonormalization method for stable and efficient computation of Green’s functions. Bull Seismol Soc Am 89:733–741

    Google Scholar 

  41. Wang R, Kümpel H-J (2003) Poroelasticity: efficient modeling of strongly coupled, slow deformation processes in a multilayered half-space. Geophysics 68:705–717

    Article  ADS  Google Scholar 

  42. Booker JR, Small JC (1982) Finite layer analysis of consolidation II. Int J Numer Anal Methods Geomech 6:173–194

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

The work reported here is supported by the National Natural Science Foundation of China (Grant No. 50578121). The authors would also like to express their gratitude to the reviewers for their valuable comments and suggestions for the improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Y. Ai.

Appendix

Appendix

where \(C = \frac{k_{v}M}{\gamma_{w}}\), \(q = \sqrt{\frac{s(1 + Mn\beta )\gamma + M\xi^{2}k_{h}}{Mk_{v}}}\), p 1=q 2ξ 2, p 2=q 2−3ξ 2, p 3=q 2+ξ 2, \(\eta = \frac{2Gs}{MCp_{1}^{2}}\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ai, Z.Y., Cheng, Y.C., Zeng, W.Z. et al. 3-D consolidation of multilayered porous medium with anisotropic permeability and compressible pore fluid. Meccanica 48, 491–499 (2013). https://doi.org/10.1007/s11012-012-9691-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-012-9691-6

Keywords

Navigation