Skip to main content
Log in

Application of Ritz functions in buckling analysis of embedded orthotropic circular and elliptical micro/nano-plates based on nonlocal elasticity theory

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

A continuum model based on the nonlocal theory of elasticity is developed for buckling analysis of embedded orthotropic circular and elliptical micro/nano-plates under uniform in-plane compression. The nanoplate is considered to be rested on two-parameter Winkler-Pasternak elastic foundation. The principle of virtual work is used to derive the governing vibration and stability equations. The weighted residual statements of the equations of motion are performed and the well-known Galerkin method is employed to obtain the nonlocal “Quadratic Functional” for embedded micro/nano-plates. The Ritz functions are taken to form an expression for transverse displacement which satisfies the kinematic boundary conditions. In this way, the entire nanoplate is considered as a single super-continuum element. Employing the Ritz functions eliminates the need for mesh generation and thus large number of degrees of freedom arising in discretization methods such as finite element (FE). The results show obvious dependency of critical buckling loads on the non-locality of the micro/nano elliptical plate, especially, at very small dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

a,b :

semi-major axis and semi-minor axis of elliptical nanoplate

[B]:

buckling matrix of the nanoplate

C i :

unknown coefficients in the assumed expression for w

D ij :

components of bending rigidity tensor

E x , E y :

Young’s moduli of the material of nanoplate in x and y directions

G xy :

shear modulus of the material of nanoplate

h :

thickness of elliptical nanoplate

k w :

Winkler coefficient of two-parameter elastic foundation

k p :

Pasternak (shear) coefficient of two-parameter elastic foundation

[K]:

stiffness matrix of the nanoplate

m 0 :

mass per unit of area of the nanoplate

m 2 :

mass moment of inertia of the nanoplate

M xx ,M yy ,M xy :

moment resultants

[M]:

mass matrix of the nanoplate

N xx ,N yy ,N xy :

in-plane stress resultants

q 0 :

transverse distributed load

u,v :

displacement of the nanoplate particles in x and y directions

w :

displacement of the nanoplate particles in z direction

χ :

weight function

ε ij :

components of strain tensor

Φ i :

Ritz functions

λ b :

buckling parameter

μ :

nonlocal parameter

ν x ,ν y :

Poisson’s ratios of nanoplate in x and y directions

\(\varPi_{\mathrm{tot}}^{(nl)}\) :

nonlocal quadratic functional for nanoplates

ρ :

mass per unit of volume of the nanoplate

ω :

vibration frequency of the nanoplate

\(\sigma_{ij}^{(l)}\) :

components of local stress tensor

\(\sigma_{ij}^{(nl)}\) :

components of nonlocal stress tensor

2 :

Laplacian operator in three-dimensional Cartesian coordinate system

References

  1. Dai H, Hafner JH, Rinzler AG, Colbert DT, Smalley RE (1996) Nanotubes as nanoprobes in scanning probe microscopy. Nature 384:147

    Article  ADS  Google Scholar 

  2. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56

    Article  ADS  Google Scholar 

  3. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas K, Zimney E, Stach E, Piner R, Nguyen S, Ruoff R (2006) Graphene-based composite materials. Nature 442:282

    Article  ADS  Google Scholar 

  4. Mylvaganam K, Zhang L (2004) Important issues in a molecular dynamics simulation for characterizing the mechanical properties of carbon nanotubes. Carbon 42(10):2025–2032

    Article  Google Scholar 

  5. Sears A, Batra RC (2004) Macroscopic properties of carbon nanotubes from molecular-mechanics simulations. Phys Rev B 69(23):235406

    Article  ADS  Google Scholar 

  6. Sohi AN, Naghdabadi R (2007) Torsional buckling of carbon nanopeapods. Carbon 45:952–957

    Article  Google Scholar 

  7. Sun C, Liu K (2008) Dynamic torsional buckling of a double-walled carbon nanotube embedded in an elastic medium. Eur J Mech A, Solids 27:40–49

    Article  MATH  Google Scholar 

  8. Liew KM, He XQ, Kitipornchai S (2006) Predicting nanovibration of multi-layered graphene sheets embedded in an elastic matrix. Acta Mater 54:4229

    Article  Google Scholar 

  9. Sorop TG, de Jongh LJ (2007) Size-dependent anisotropic diamagnetic screening in superconducting Sn nanowires. Phys Rev B 75:014510

    Article  ADS  Google Scholar 

  10. Lu P, He LH, Lee HP, Lu C (2006) Thin plate theory including surface effects. Int J Solids Struct 43:4631–4647

    Article  MATH  Google Scholar 

  11. Fleck NA, Hutchinson JW (1997) Strain gradient plasticity. Adv Appl Mech 33:296–358

    Google Scholar 

  12. Yang F, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39:2731–2743

    Article  MATH  Google Scholar 

  13. Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710

    Article  ADS  Google Scholar 

  14. Eringen AC (2002) Nonlocal continuum field theories. Springer, New York

    MATH  Google Scholar 

  15. Wang Q, Wang CM (2007) The constitutive relation and small scale parameter of nonlocal continuum mechanics for modeling carbon nanotubes. Nanotechnology 18(7):075702

    Article  ADS  Google Scholar 

  16. Reddy JN (2007) Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 45:288–307

    Article  MATH  Google Scholar 

  17. Khademolhosseini F, Rajapakse RKND, Nojeh A (2010) Torsional buckling of carbon nanotubes based on nonlocal elasticity shell models. Comput Mater Sci 48:736–742

    Article  Google Scholar 

  18. Arroyo M, Belytschko T (2005) Continuum mechanics modeling and simulation of carbon nanotubes. Meccanica 40:455–469

    Article  MathSciNet  MATH  Google Scholar 

  19. Wan H, Delale F (2010) A structural mechanics approach for predicting the mechanical properties of carbon nanotubes. Meccanica 45:43–51

    Article  MATH  Google Scholar 

  20. Omidi M, Alaie S, Rousta A (2012) Analysis of the vibrational behavior of the composite cylinders reinforced with non-uniform distributed carbon nanotubes using micro-mechanical approach. Meccanica 47:817–833

    Article  MathSciNet  Google Scholar 

  21. Zhang L, Huang H (2006) Young’s moduli of ZnO nanoplates: Ab initio determinations. Appl Phys Lett 89:183111

    Article  ADS  Google Scholar 

  22. Freund LB, Suresh S (2003) Thin film materials. Cambridge University Press, Cambridge

    Google Scholar 

  23. He XQ, Kitipornchai S, Liew KM (2005) Resonance analysis of multi-layered graphene sheets used as nanoscale resonators. Nanotechnology 16:2086–2091

    Article  ADS  Google Scholar 

  24. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375

    Article  Google Scholar 

  25. Luo X, Chung DDL (2000) Vibration damping using flexible graphite. Carbon 38:1510–1512

    Article  Google Scholar 

  26. Sakhaee-Pour A (2009) Elastic buckling of single-layered graphene sheet. Comput Mater Sci 45:266–270

    Article  Google Scholar 

  27. Pradhan SC, Murmu T (2010) Small scale effect on the buckling analysis of single-layered graphene sheet embedded in an elastic medium based on nonlocal plate theory. Physica E 42:1293–1301

    Article  ADS  Google Scholar 

  28. Murmu T, Pradhan SC (2009) Buckling of biaxially compressed orthotropic plates at small scales. Mech Res Commun 36:933–938

    Article  Google Scholar 

  29. Aksencer T, Aydogdu M (2011) Levy type solution method for vibration and buckling of nanoplates using nonlocal elasticity theory. Physica E 43:954–959

    Article  ADS  Google Scholar 

  30. Babaie H, Shahidi AR (2010) Small-scale effects on the buckling of quadrilateral nanoplates based on nonlocal elasticity theory using the Galerkin method. Arch Appl Mech 81(8):1051–1062

    Article  Google Scholar 

  31. Malekzadeh P, Setoodeh AR, Alibeygi Beni A (2011) Small scale effect on the thermal buckling of orthotropic arbitrary straight-sided quadrilateral nanoplates embedded in elastic medium. J Compos Struct 93:2083–2089

    Article  Google Scholar 

  32. Duan WH, Wang CM (2007) Exact solutions for axisymmetric bending of micro/nanoscale circular plates based on nonlocal plate theory. Nanotechnology 18:385704

    Article  ADS  Google Scholar 

  33. Shahidi AR, Sabetghadam A, Moosavi A, Mazhari E (2008) Stability analysis of plates with hole on unilateral elastic foundation by finite element method. In: Proceedings of 17th international conference on mechanical engineering. Tehran University, Tehran, pp 387–388

    Google Scholar 

  34. Shahidi AR, Mahzoon M, Saadatpour MM, Azhari M (2005) Very large deformation analysis of plates and folded plates by finite strip method. Adv Struct Eng 8(6):547–560

    Article  Google Scholar 

  35. Liew KM, Wang CM (1993) Pb-2 Rayleigh-Ritz method for general plate analysis. Eng Struct 15(1):55–60

    Article  Google Scholar 

  36. Azhari M, Shahidi AR, Saadatpour MM (2005) Local and post-local buckling of stepped and perforated thin plates. Appl Math Model 29(7):633–652

    Article  MATH  Google Scholar 

  37. Chakraverty S, Petyt M (1999) Vibration of non-homogeneous plates using two-dimensional orthogonal polynomials as shape functions in the Rayleigh-Ritz method. J Mech Eng Sci 213:707–714

    Google Scholar 

  38. Çeribaşı S, Altay G (2009) Free vibration of super elliptical plates with constant and variable thickness by Ritz method. J Sound Vib 319:668–680

    Article  ADS  Google Scholar 

  39. Adali S (2009) Variational principle for transversely vibrating multiwalled carbon nanotubes based on nonlocal Euler-Bernoulli beam model. Nano Lett 9:1737–1741

    Article  ADS  Google Scholar 

  40. Phadikar JK, Pradhan SC (2010) Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates. Comput Mater Sci 49:492–499

    Article  Google Scholar 

  41. Reddy JN (1997) Mechanics of laminated composite plates, theory and analysis. Chemical Rubber Company, Boca Raton

    MATH  Google Scholar 

  42. Dym L, Shames IH (1973) Solid mechanics: a variational approach, Int Student ed. McGraw-Hill, New York

    Google Scholar 

  43. Lekhnitskii SG (1968) Anisotropic plates. Gordon & Breach, New York

    Google Scholar 

  44. Shahidi AR, Sabetghadam A, Moosavi A, Mazaheri E (2008) Thickness optimization of elliptic plate for maximizing of natural frequency. In: Proceedings of 17th international conference on mechanical engineering. Tehran University, Tehran, pp 379–380

  45. Wang CM, Wang L (1994) Vibration and buckling of super elliptical plates. J Sound Vib 171(3):301–314

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Anjomshoa.

Appendix

Appendix

(A.1)
(A.2)
(A.3)
(A.4)
(A.5)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anjomshoa, A. Application of Ritz functions in buckling analysis of embedded orthotropic circular and elliptical micro/nano-plates based on nonlocal elasticity theory. Meccanica 48, 1337–1353 (2013). https://doi.org/10.1007/s11012-012-9670-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-012-9670-y

Keywords

Navigation